
Implementation of a secure E-commerce

solution for the Internet

Ward Vandewege

A thesis submitted in partial fulfilment of the requirements of the

Katholieke Hogeschool Sint-Lieven, Department KIHO for the

degree of Industrial Engineer,

carried out at the University of Central England.

June 1998

Katholieke Hogeschool Sint-Lieven, Department KIHO

and

University of Central England in Birmingham,

Department of Engineering and Computing Technology

Implementation of a secure e-commerce solution for the internet 1

Table of Contents

1. ABSTRACT..4

2. INTRODUCTION...5

2.1 ACKNOWLEDGEMENTS..5

2.2 INTRODUCTION...5

3. PROBLEM DEFINITION..6

3.1 ASSIGNMENT..6

3.2 DETAILS...6

3.3 RESEARCH...6

4. RESEARCH...7

4.1 CHOICES TO MAKE..7

4.2 OS TO RUN THE WEB SERVER ON..7

4.3 WEB SERVER...8

4.4 ENCRYPTION..9

4.4.1 Options...9

4.4.2 SSL..9

4.5 PROGRAMMING LANGUAGE ON THE SERVER..10

4.6 PROGRAMMING LANGUAGE ON THE CLIENT...12

4.7 DATABASES...13

5. SERVLETS AND NES..14

5.1 RUNNING SERVLETS UNDER NES...14

5.2 CALLING SERVLETS..14

5.3 THE BASIC STRUCTURE OF A SERVLET..16

6. SPECIFICATIONS..19

6.1 TWO INTERFACES..19

6.2 CUSTOMER INTERFACE...19

6.3 ADMINISTRATION INTERFACE..20

7. DESIGN..22

7.1 PREAMBLE...22

7.2 MULTI-THREADING..22

7.3 THE SECURE CONNECTION...22

7.4 MODULES...23

7.3.1 Product data class..23

7.3.2 Customer data class...23

7.3.3 Transaction data class...24

2

7.3.4 Products servlet class..24

7.3.5 Users servlet class..24

7.3.6 ProcessTransactions servlet class...25

7.3.7 Serve servlet class..25

7.3.8 ServeParser class...27

7.3.9 Management servlet class..27

7.3.10 Cart servlet class..28

8. IMPLEMENTATION...29

8.1 PREAMBLE...29

8.2 THE SOURCE CODE EXPLAINED...29

8.2.1 Product.java...29

8.2.2 Customer.java..31

8.2.3 Transaction.java..33

8.2.4 Products.java...34

8.2.5 Users.java...42

8.2.6 ProcessTransactions.java..51

8.2.7 Serve.java...59

8.2.8 ServeParser.java..63

8.2.9 Management.java...66

8.2.10 Cart.java...71

8.2.11 CheckCC.java..76

8.2.12 Sorter.java..76

8.2.13 CustomerDetailsFormCheck.js..76

9. INSTALLING THE SOFTWARE ON A COMPUTER...78

10. CONCLUSION AND FURTHER WORK..79

11. APPENDICES..80

11.1 REVIEWS AND DOCUMENTATION..80

11.1.1 INSTALLING NOVELL NETWARE 4.11 SERVER..80

11.1.2 INSTALLING WINDOWS NT 4.0 OVER A LAN...82

11.1.3 CONFIGURING NETSCAPE ENTERPRISE SERVER 3.5.1...83

11.1.4 JBUILDER 1.1...92

11.2 SOURCE CODE...94

11.3 GENERAL.CSS...94

11.4 USED ABBREVIATIONS...95

12. REFERENCES...96

Implementation of a secure e-commerce solution for the internet 3

1. Abstract

The assignment was to implement a secure E-commerce solution for the Internet, in an

isolated LAN consisting of 3 machines: a Novell-server for authentication on the LAN, a NT-

server to run the web server and a NT-workstation with Netscape Communicator to simulate

the users.

After some research, I have chosen to use Netscape Enterprise Server (NES) 3.5.1 as web

server and Java Servlets to do all information processing on the server. Javascript is used to

add some intelligence on the client-side. Also on the client-side, cookies are used to keep

track of temporary data. The security of purchase is guaranteed by the use of the Secure

Sockets Layer (SSL) protocol.

Practically, this thesis project consists of a web site that allows the secure purchase of items

over the Internet, featuring shopping carts, Credit Card validation, a database of customers

and a database of products. It also contains documentation/reviews on: JBuilder 1.1,

Installing Netware 4.11, Installing Windows NT over a LAN and configuring Netscape

Enterprise Server 3.5.1.

4

2. Introduction

2.1 Acknowledgements

First of all I want to thank my supervisor at the UCE, Chris Noble, and at the KIHO Dr. Luc

De Backer, for the great support. Furthermore many thanks to Dr. Simon Handley of the UCE

for taking care of me and the other Socrates students. Many thanks also to Richard Kay for

the enriching exchanges of ideas. And a lot of thanks to Dean England and John Higgins for

helping me out with many practical issues. Thanks also to Imran Yousaf. And finally a big

thank you to my parents and (international) friends.

2.2 Introduction

Over the recent years, trading on the Internet has only just begun. eMarketer

(http://www.emarketer.com), a New York based market research firm, estimates that

consumers will spend $4.5 billion buying goods on the Internet in 1998. In 1997, electronic

commerce was good for 1.8 billion dollar, and by 2002 they estimate it to reach $26 billion,

almost a six-fold of the estimated 1998 figure.

The real big numbers lie in Business to business electronic commerce, however. eMarketer

estimates that sales in this segment will rise form $5.6 billion in 1997 to nearly $16 billion in

1998 and an amazing $268 billion in 2002.

All these number have to be put in perspective though; for instance, eMarketer predicts that

the online sale of airline-tickets will increase from 1% of the total sales today to 5% in 2002.

This is still only a small share, but looking at the pace E-commerce is gaining importance

with, it is not hard to imagine that within 10 to 15 years, E-commerce will account for a major

share of the total world trade.

For obvious reasons, all this trade needs a secure channel to encrypt sensitive data like

credit card numbers. And that is why this thesis project focuses on the development of a

secure E-commerce solution for the Internet.

Implementation of a secure e-commerce solution for the internet 5

3. Problem definition

3.1 Assignment

The assignment consists of the implementation of a secure E-commerce solution for the

Internet, in an isolated LAN consisting of 3 machines: a Novell-server for authentication on

the LAN, a NT-server to run the web server and a NT-workstation with Netscape

Communicator to simulate the users. Some research is necessary to decide which web

server to use, what technology to use for the information processing on the server, etc.

Practically, the goal of this project is the development of a web site that allows the secure

purchase of documents over the Internet.

3.2 Details

The proposed setup is drawn in fig. 3.1:

Ethernet

Novell Server

Authentication
Intranetware 4.11

NT 4.0 Server
Secure web server

NT 4.0 Workstation
Communicator 4.05
Novell Client Software

Fig. 3.1 Proposed setup

Novell Server: P166MMX, 32MB RAM

NT 4.0 Server: P166MMX, 32MB RAM

NT 4.0 Workstation: P166MMX, 32MB RAM

This setup with the Novell server for authentication on the LAN has been chosen to allow

easy merger with the existing UCE-DECT network later on. In this network, all authentication

is being handled by a Novell server.

3.3 Research

The next chapter of this report looks into what solutions are currently available, and makes a

brief analysis of the used techniques, price,... of the various products on the market.

In particular I look into a company named Novonyx, a joint-venture of Novell and Netscape,

that is porting the various Netscape Server products to the Novell platform. I find out if it is

worth it to drop the NT server and use the Novell machine for the (secure) web server as

well.

6

4. Research

4.1 Choices to make

In the following paragraphs, I will take a look at the options that exist when developing an E-

commerce solution. The main choices to make are: what OS to run the web server on, which

web server to use, what encryption protocol to use, and which programming or scripting

languages to use on the server and on the client.

A final thing to consider is which commercial database to use.

4.2 OS to run the web server on

Obviously, the choice of the OS to run the web server on depends mainly on the choice of

the web server, because most web servers are only available for a few Operating Systems.

Another consideration is the availability of Operating Systems at the UCE. Licences are

available for Novell Netware 4.11 and NT Sever 4.0. So this narrows the choice down to

these 2 Operating Systems and Linux, a - among academics - popular freeware POSIX

compliant UNIX-implementation for Intel, PowerPC, Alpha,... . The third criterion is the

machine this OS was to run on, in this case an Intel-processor based PC. The three

Operating Systems mentioned above are available for the Intel platform.

The E-commerce solution I set up during this thesis will be used as a demonstrator for

DECT-students in the future, and that is why my supervisor prefers NT or Netware over

Linux, because the importance of the latter OS outside the academic world is rather limited.

It is therefore not a prominent part of the education in the Department of Engineering and

Computer Technology at the UCE.

Implementation of a secure e-commerce solution for the internet 7

4.3 Web server

There are many different web servers available on the market today. Some are free, but

most are not. The most popular web servers today on the Intel-platform are:

Product Company Runs on ... Price
Apache The Apache

Group

Different flavours of UNIX Free

HTTPd NCSA Different flavours of UNIX Free - no longer supported
IIS 4.0 Microsoft NT Free with NT Server 4.0
NES 3.5.1 Netscape NT and Sun Solaris Free for educational

institutions, otherwise 1295 $
NES 3.0 Novonyx Novell Netware 4.11 Not free; see

http://www.novonyx.com
Lotus Domino Lotus NT, OS/390, Windows 95,

OS/2 Warp, AIX, Sun

Solaris, HP-UX

free 30-day trial; after that free

with SSL disabled; otherwise

contact http://www.lotus.com
JavaServer

1.1

Sun NT and Sun Solaris free 30-day trial; after that 295

$
...

Because the desired web server must should on NT or Netware, the UNIX-web servers

Apache and HTTPd are ruled out.

NES is available on the 2 platforms, NT and Netware. The Netware version however is not

free for educational purposes, and, more importantly, it is not the latest available version (3.0

as opposed to 3.5.1 on NT). This ruled out Novonyx’ NES for me.

Because Novonyx’ product is the only one available for Netware, our OS of choice will

consequently be NT Server 4.0. A free web server is obviously preferred, so IIS and NES

3.5.1 are preferred over Lotus Domino and JavaServer.

I have used IIS 3.0 before, and, when I started this thesis project, this was still the latest

available version. It has some advantages, but I dislike the poor documentation and the

horrible file-permissions. Instead of using Access Control Lists (ACL) as most other web

servers do, IIS 3.0 security relies entirely on setting the correct file permissions in the OS, a

tedious process. This made me a bit reluctant to use IIS, and there is also the point of not

getting too reliant on one software vendor. Indeed, NT is a Microsoft OS, and IIS is a

Microsoft product as well.

At the end of march IIS 4.0 was released, but by then I had made the decision to use

Netscape Enterprise Server 3.5.1 on NT, and my project had advanced too far to change

web servers.

8

4.4 Encryption

4.4.1 Options

There are a few proposed encryption and user authentication standards for the Web. The

most well known are Secure Sockets Layer (SSL) and Secure HyperText Transport Protocol

(SHTTP). Each requires the right combination of compatible browser and server to operate.

The last few years SSL, the scheme proposed by Netscape, has become the de-facto

standard, as it is the only protocol supported by the two major browsers available, Netscape

Communicator and MS Internet Explorer (IE). The SSL protocol is implemented in most web

servers, including NES and IIS. This makes SSL a good choice for this thesis project. The

original SSL proposal by Netscape can be found at

http://home.netscape.com/newsref/std/SSL.html.

SHTTP has only been implemented in the Open Market Server marketed by Open Market,

Inc. on the server side, and in Secure HTTP Mosaic by Enterprise Integration Technologies

on the client side. This makes SHTTP not a good choice for this thesis project - obviously

there is no real off-the-shelf alternative today for SSL.

4.4.2 SSL

SSL currently uses 128-bit encryption in the USA and 40-bit encryption outside, because of

American export regulations. Actually, outside the USA, 128-bit encryption is used as well,

but only 40 of these 128 bits are hidden. Secure Sockets Layer (SSL) is a protocol situated in

the network layer, above TCP-IP, but below HTTP, FTP,... It uses a combined

symmetric/public key encryption approach. Symmetric encryption uses one key for both

encryption and decryption.

Public key encryption:

Public key encryption uses 2 keys, one for encrypting and one for decrypting. Public key

encryption is easy to calculate in one way (encryption) but very hard to calculate the other

way (decryption). The keys are called the public key and the private key. You can distribute

your public key freely, but you may never reveal your private key to anyone. A message

encrypted with your public key can only be decrypted with your private key, and vice versa.

So if someone wants to send you a message that only you can decrypt, he (or she) encrypts

the message with your public key. This means it can only be decrypted with your private key,

which only you have. But it works the other way around as well. Imagine you want to publish

a message to the world, but so that everyone can be sure it originated from you. You would

then "sign" the message using your private key, i.e. you would add a block encrypted with

your private key to the unencrypted, readable message. This encrypted block contains a

digital signature of the original document you sent out. Since the encrypted block can only be

decrypted using your public key, everyone can see it originated from you. And they can also

Implementation of a secure e-commerce solution for the internet 9

see if the document has been tampered with, because the digital signature in the encrypted

block must match the accompanying document.

The encryption of SSL:

Because asymmetric (public key) encryption is slower than symmetric encryption, SSL uses

a combination of the two. When a server and a client start a new connection, they start by

exchanging their public keys. Then the client calculates a symmetric key for this session,

encrypts it with the servers public key and sends it to the server. The server decrypts the

message using its private key, and from that point on all encryption for this session is done

using the - faster - symmetric key.

The "strength" of a key is measured by the number of bits used in certain numbers creating

the key. In the US, SSL uses 128 bit encryption, which is - now - very hard to break. But the

international version of SSL only uses 40 bit encryption (due to US export regulations), which

isn't all that secure. But when considering encryption, the most important thing is the value of

the information versus the cost or time to crack the encryption. Eventually, the American

Export regulations will change, and when that happens, no changes will be necessary to this

thesis project, because I just use standard SSL. When running this program with a new

server and client that support SSL with more bits, the information that is sent using SSL will

be more secure, without changes to my source code.

How does the encryption work?

The encryption keys discussed higher are complex mathematical functions that are easy to

compute in one direction, but very hard to compute in the other direction. Because of this, it

is very hard for someone to decipher your private key or your message even when he has

your public key and the encrypted message. The types of functions used in public key

encryption are very complex and resistant to pattern searches because they use prime

numbers in their calculations. There are no patterns for determining prime numbers, so

examining the cyphertext for patterns won't do much good.

But if decrypting an encrypted message is so hard, how come with the private key it is

quickly possible? The private key is also a complex mathematical function, embedded in the

public key as a shortcut to "solving" the public key function (and thus decrypting the

encrypted message). It is as difficult to determine the private key from a public key as it is to

decrypt an encrypted message.

4.5 Programming language on the server

The Common Gateway Interface (CGI) is located on the server, and it is an interface

between programs and a HTTP server. Like a door between two rooms, the CGI is between

programs and the HTTP server. CGI lets these programs access information coming from

the client (such as HTML forms, data,...) and send a response back to the browser of the

client. This response can be anything that the browser of the client understands (HTML, plain

10

text, sound, video,...). This allows web-pages to become interactive, to behave differently

depending on user-input. A typical use for CGI-programs or scripts, as the programs that are

accessible through the HTTP server are commonly called, is accessing a database of some

kind.

CGI-programs used to be written mainly in Perl and C, but this is changing now with the

advent of Java and Javascript. Netscape is pushing Javascript as the development platform

for NES, but Javascript has the disadvantage that it is only a scripting language. This means

that it is relatively easy to learn and use, but also that it is limited in its features. This was the

primary reason I did not choose Javascript as the programming language on the server.

Instead I chose to use Java Servlets, a new technology that allows powerful CGI-

programming in Java. Servlets are Java classes loaded into and invoked by a Web server. In

fact, they are the server equivalent of applets on the browser side, hence the name servlets.

The big advantages that Java has over traditional programming languages, such as C(++),

are:

• Portability: Java source code and compiled byte code work unchanged across a multitude

of platforms, including Windows, MAC OS and most flavours of UNIX.

• Features: Java has plenty of powerful features such as built-in threads, exceptions,

security and an excellent Object Model,...

• Ease of use: despite all these features, Java is a lot easier to use and simpler than C++.

• Network-aware: Java is inherently network-aware, with objects that map to sockets

(TCP/IP network connections), URLs, ...

• ...

Java Servlets have additional advantages over traditional CGI programming: performance

and reliability. When using typical C or Perl CGI-solutions, for every incoming CGI request

the CGI program loads, initialises, executes, and finally returns information (HTML,...). This

is a time-consuming process, and many simultaneous CGI requests can quickly bring a high-

traffic server to its knees.

Both Microsoft and Netscape have tried to do something about this performance issue, by

releasing APIs to allow programmers to write CGI-programs as libraries, that load as part of

the server itself. This greatly improves performance because the libraries are loaded when

the server starts, and not killed after every request. But this approach also places more

responsibility on the programmer: a badly written library can easily crash the complete Web

server. This seriously endangers the reliability of the Web server.

Java Servlets provide solutions to the problems of performance and reliability. Once a Java

Servlet has been invoked (not necessarily when the server starts; more likely when it is

called the first time), it stays alive and ready for the next request. When multiple requests are

made at the same time, more instances of the servlet are created - provided you did not

specify the single thread model for your Servlet, in which case all requests will be processed

sequentially.

Implementation of a secure e-commerce solution for the internet 11

Because Java is pointerless, and has an excellent garbage-collector, which takes away the

complex memory-management task from the programmer, a Java Servlet is much less likely

to misbehave sufficiently to crash the server than a C++ CGI.

Additionally, you can use the full power of the Java language when developing Java

Servlets. Java has numerous standard libraries for useful features like accessing ZIP-files,

ODBC database access through Java Database Connectivity (JDBC), object serialisation,...

There is one downside to Java in general and Java Servlets in particular. It is a young

technology, and therefore it is constantly evolving. I will describe the problems I ran into

because of this later in this report.

4.6 Programming language on the client

Because we do not live in a perfect world, not everyone has a T1 connection to the Internet.

Consequently, as any web site, a good e-commerce solution should be economical with the

transport of information over the Internet, to reduce the waiting time for the customers. One

of the ways to do this, is to add some intelligence on the client side, in the browser of the

potential customer.

When the customer fills out a form, certain fields have to comply with rules, e.g., his or her

name should not be empty and the Credit Card number he or she specifies should be valid. If

this information has to be sent to the server to be verified there, and then returned to the

client if it is not correct, a lot of overhead is introduced. This overhead can be avoided by

adding some sort of form-verification in the browser on the client-side. There are not many

alternatives to achieve this goal - only Javascript and VBscript. Because Javascript is

currently the only one supported on both major browsers, my choice was quickly made in

favour of it.

12

4.7 Databases

An E-commerce site obviously needs a database. In our case, we need three databases: one

for the products, one for the customers, and one for the transactions.

There were no heavy-duty databases like Oracle, SyBase or IBM’s DB2 available to use at

the UCE/DECT. The only databases available were MS Access, Paradox or Inprise’s

(formerly Borland) InterBase. Of these, Access and Paradox are not heavy duty - some

people refer to them as “toys”.

There is another option: not to use a database, but simply save the information in a

proprietary format. The disadvantage of this approach is that the E-commerce solution will

not be able to support thousands of users, products or transactions, simply because it will

become too slow when big quantities of data are involved. But the big advantage is that the

solution stays very portable, because all data access is done in Java and saved directly in

files. Choosing for an Access or Paradox database - accessible through our servlet via JDBC

- would bind us to Windows servers. This seems a big sacrifice to make, especially because

using these “toy”-databases will not allow to make a real industrial strength e-commerce

solution anyway.

So I chose to use no commercial database, but instead save all information directly in files

on the server. This obviously limits the solution in scalability - I think it will be too slow for

more than a few hundred transactions a day, a few dozens products and a few hundred users

- though much will depend on the hardware. If more than that would be required, a high-end

server hardware would be necessary anyway - though switching to Linux might improve

performance considerably with the same hardware.

Implementation of a secure e-commerce solution for the internet 13

5. Servlets and NES

5.1 Running servlets under NES

Currently (April 1998) the last stable Java Development Kit (JDK) version is 1.1.6, but this

version is not yet supported in many applications. Netscape Communicator for instance, only

supports Java 1.1 natively since version 4.05, which came out in April 1998. Because the

Java Servlets are executed on the server, what version of Java the client’s browser supports

is irrelevant, but I ran into similar compatibility issues with NES. Netscape claims that

Enterprise Server 3.5.1 supports JDK 1.1.x, but I had compatibility problems when running

my servlets. Using the Servletrunner provided with the Java Servlet Development Kit 1.1.5

(the last standalone version; from JDK version 1.2 the JSDK is included with the JDK) they

ran without problems, but when I tried to run them under NES they crashed continuously.

The exact cause of the crashes was unclear, but had something to do with the rather limited

implementation of Servlets in NES 3.5.1.

There are solutions to this. Several companies offer “plugins” for different web-servers.

These plugins are more powerful implementations of Java Servlets than the one provided

with the server, in this case NES. After some research, I came across some laudative

comments on such a plugin called JRun, by Live Software. I decided to try it, and after a

flawless installation ... my servlets didn’t run at all any more.

The problem was the version of the JSDK. JRun 2.1.2, the version I am using, uses JDK 1.2

Beta 3, which includes the 1.2 (Beta)version of the JSDK. And there are some significant

changes in the Servlet API between version 1.1.5 and 1.2, since the four servlet packages

that existed in the former are now merged in two packages, javax.servlet and

javax.servlet.http. So after the porting of the code I had written so far, my servlets ran

without problems. And the best thing about JRun is that it is free.

5.2 Calling servlets

When the web-server loads a servlet, it refers to a file servlets.properties, which resides in

one of the configuration directories of the server. For information on where to find this file in

NES, refer to appendix 11.1.3, point 14, using Java Servlets in NES. When JRun is installed,

the servlets.properties file usually resides in the

\Program Files\Live Software\JRunNSAPI\servlets\properties\ directory. The

servlets.properties file as used in this project can be found in table 5.1.

14

Table 5.1

Servlets.properties file

Every servlet has 2 sets

of lines; one set with

lines of the form

servlet.servletname....,

and one with lines of the

form

servlet.servletnameDebug.... Each set has 4 lines; three of which are necessary for JRun.

The first line, servlet.servletname.preload determines if the servlet should be preloaded when

the server starts. If this is true, the servlet will be loaded at server setup; otherwise, it will be

loaded when it gets first called. The second line, servlet.servletname.code determines which

servlet should be called when servletname appears in a URL. The extension .java should not

be specified. The next line, servlet.servletname.initArgs, lists parameters that are passed to

the servlet. The parameters should be specified in the form

paramname=value,paramname=value,...

So, putting this all together, when the URL http://some.server.name/Servlet/ProductsDebug

is requested, the servlet Products gets called because of the line

“servlet.ProductsDebug.code=Products” in the servlets.properties file, with the arguments as

specified in “servlet.ProductsDebug.initArgs=filename=E:/temp/products.dat,debug=true“. So

in this case, the debug parameter is set to true. When the URL

http://some.server.name/Servlet/Products is requested, the same servlet is called because of

the “servlet.Products.code=Products” line, but this time with the debug parameter set to false

Implementation of a secure e-commerce solution for the internet 15

#
Servlets Properties
#
servlet.<servlet name>.code=class name (foo, not foo.class)
servlet.<servlet name>.args=list of {name, value} pairs which can be accessed
by the servlet using the servlet API calls
servlet.<servlet name>.preload='true' or 'false' determines whether this servlet
is loaded at server startup
servlet.jrunssi.preload=true
servlet.jrunssi.args=
servlet.jrunssi.code=com.livesoftware.jrun.plugins.ssi.JRunSSI
#Added by Ward Vandewege
servlet.Products.preload=false
servlet.Products.code=Products
servlet.Products.args=filename=E:/temp/products.dat
servlet.Products.initArgs=filename=E:/temp/products.dat
servlet.ProductsDebug.preload=false
servlet.ProductsDebug.code=Products
servlet.ProductsDebug.args=filename=E:/temp/products.dat,debug=true
servlet.ProductsDebug.initArgs=filename=E:/temp/products.dat,debug=true
servlet.Users.preload=false
servlet.Users.code=Users
servlet.Users.args=filename=E:/temp/customers.dat
servlet.Users.initArgs=filename=E:/temp/customers.dat
servlet.UsersDebug.preload=false
servlet.UsersDebug.code=Users
servlet.UsersDebug.initArgs=filename=E:/temp/customers.dat,debug=true
servlet.UsersDebug.args=filename=E:/temp/customers.dat,debug=true
servlet.Cart.preload=false
servlet.Cart.code=Cart
servlet.Cart.args=debug=false
servlet.Cart.initArgs=debug=false
servlet.CartDebug.preload=false
servlet.CartDebug.code=Cart
servlet.CartDebug.initArgs=debug=true
servlet.CartDebug.args=debug=true
servlet.ProcessTransactions.preload=false
servlet.ProcessTransactions.code=ProcessTransactions
servlet.ProcessTransactions.args=filename=E:/temp/transactions.dat,debug=false
servlet.ProcessTransactions.initArgs=filename=E:/temp/transactions.dat,debug=false
servlet.Serve.preload=false
servlet.Serve.code=Serve
servlet.Serve.args=debug=false
servlet.Serve.initArgs=debug=false
servlet.ServeDebug.preload=false
servlet.ServeDebug.code=Serve
servlet.ServeDebug.args=debug=true
servlet.ServeDebug.initArgs=debug=true

because it is initialised differently in the initArgs line. This is an easy way to toggle the debug

output on or off, because all the servlets set the class parameter debug, according to the

value passed to them from the servlets.properties file. This parameter is checked every time

debug output is written.

The fourth line, servlet.servletname.args has the same function as the initArgs line, but for

some unclear reason the JRun people have changed the ServletRunner default (args) to

initArgs. I include both lines to allow compatibility with the ServletRunner, as provided with

the JDK. The initArgs line is ignored when the ServletRunner uses the file, and the args line

is ignored by JRun.

5.3 The basic structure of a servlet

A web-servlet is a descendant of the HttpServlet class, which adds HTTP-specific methods to

the generic servlet interface. Servlets usually override the superclass methods

init(ServletConfig config), destroy(), doPost(HttpServletRequest req, HttpServletResponse

res), doGet(HttpServletRequest req, HttpServletResponse res) and getServletInfo().

The method init is called the first time when the servlet is loaded, and could for instance be

used to connect to an external database using JDBC, or to open a file. If you define init in

your servlet, you are overriding the init method in superclass HttpServlet. The init method in

HttpServlet does some important initialisation, so you must call super.init(config) from

somewhere in your version of init. Just before the servlet is destroyed, destroy() is called. It

could e.g. be used to close the connection to a database, or to close any open files.

The methods doPost and doGet are invoked when the Web server gets a Post respectively

Get request from the client. In both cases, two parameters are passed in: HttpServletRequest

req and HttpServletResponse res. The HttpServletRequest is an object that contains all the

information about the request (e.g. the client’s IP address, host name, and request

parameters). The parameter res, of the type HttpServletResponse, is an object that allows

our servlet to respond to the request. Using res, we can set the type of data we are returning

(e.g. text or html), find the outputstream we should write to, and - in our case - set Http-

specific headers.

You should also override getServletInfo(). This method should return a short description of

the servlet, that then can be displayed in a server’s administration interface.

The following example is a very basic servlet that only overrides the methods doPost, doGet

and getServletInfo. Because there is nothing to do when the servlet loads or is destroyed, init

and destroy are not implemented, resulting in calls to the superclass’s corresponding

methods when the server loads or destroys the servlet.

This sample servlet shown in table 5.2 counts the number of hits from the originating IP

address.

16

Implementation of a secure e-commerce solution for the internet 17

import java.io.*;
import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

/**
 * Servlet IPCount
 * This sample servlet counts the number of hits with the originating
 * IP-address.
 *
 * @version 1.00, 25/05/98
 * @author Ward Vandewege (wardv@usa.net)
 */
public class IPCount extends HttpServlet {
 Hashtable countHash = new Hashtable();

 /**
 * Called by the web server when a HTTP POST request is made.
 * @param req The POST request information
 * @param res The HTTP response object
 */
 public void doPost (HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {
 //value chosen to limit denial of service
 if (req.getContentLength() > 8*1024) {
 res.setContentType("text/html");
 ServletOutputStream out = res.getOutputStream();
 out.println("<html><head><title>Too big</title></head>");
 out.println("<body><h1>Error - content length >8k not allowed");
 out.println("</h1></body></html>");
 } else {
 processRequest(req,res);
 }
 }

Table 5.2: a simple

servlet

 /**
 * Called by the web server when a HTTP GET request is made.
 * @param req The GET request information
 * @param res The HTTP response object
 */
 public void doGet (HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {
 processRequest(req,res);
 }

 /**
 * Process the requests coming from doPost and doGet
 * @param req The POST/GET request information
 * @param res The HTTP response object
 */
 private void processRequest(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {
 String remoteAddress = req.getRemoteAddr();
 Integer hits;
 synchronized(countHash) {
 if (countHash.containsKey(remoteAddress)) {
 hits = (Integer)countHash.get(remoteAddress);
 hits = new Integer(hits.intValue() + 1);
 } else {
 hits = new Integer(1);
 }
 countHash.put(remoteAddress, hits);
 }
 res.setContentType("text/plain");
 ServletOutputStream out = res.getOutputStream();
 out.println("This site has been accessed "+ hits +" time"+((hits.intValue() > 1) ? "s" : "")+
 " from your IP-address: "+ remoteAddress);
 }

 /**
 * getServletInfo() returns a short description of a servlet.
 */
 public String getServletInfo() {
 return "Returns number of hits by IP address.";
 }
}

18

6. Specifications

6.1 Two interfaces

When developing an E-commerce web site, there are 2 interfaces to be created. The first

one is the customer interface, where items can be purchased and searched for, and where

personal information can be updated. But an administration interface is also necessary. Here,

a site administrator should be able to manage products, users and transactions.

In this case, both of these interfaces are accessible through a web browser, thus allowing

easy access to the web site from all over the world, also for the administrator. The big

advantage of the browser-approach is that there is no need to create a proprietary front-end

for the administration of the site. The administrator can do his job from whatever machine he

wants, as long as it has a web-browser. And web-browsers are universally available for

almost every platform.

6.2 Customer interface

The customer interface is what people will interact with when they visit the site. Consequently

it should be easy to use, self-explaining and straightforward. The necessary features are: a

product list, a product search facility, an easy way to order products and a means to update

the customers’ personal information.

The easy way to order products needs some further thoughts. In real life, when we go

shopping, we don’t take one item, pay for it, take another one, pay for it, etc. No, we collect

the products we need, and pay for them all together. To collect the items we need, we often

use a shopping cart. Hence, it would be nice to implement the equivalent of a shopping cart

for the E-commerce site. This implies the implementation of extra features: viewing and

editing the shopping cart.

The site will sell documents. There are 2 options to do this: either a download is allowed after

purchase, or the user is simply allowed access to the online documents. The first approach

has two disadvantages. First, it is not unlikely that something goes wrong during the

download: transmission faults, aborted downloads,... are very common today on the Internet.

So we might end up charging customers for documents that they did not receive properly,

probably resulting in a lot of complaints. Secondly, once the user has downloaded

documents, he or she has no easy access to corrected versions of the documents, updates,...

These two disadvantages made me adopt the second solution. Once the transaction is

saved, the user can login to a personalised page where the documents he or she purchased

access to are listed. These documents can be saved locally if the user wishes to, but the

most recent version will always be available online. This is especially interesting for online

courses. The (simplified) customer site map is shown in figure 6.1.

Implementation of a secure e-commerce solution for the internet 19

Fig 6.1 Customer site map

6.3 Administration interface

The administrator of the site is the only person who will use the administration interface. He

or she can be expected to be knowledgeable about E-commerce and the managing of such a

site. As a result, the stress should rather be on powerful features than on ease of use and

straightforwardness - not entirely forgetting the latter two of course.

First of all, the administrator needs to provide his credentials (i.e. his login name and

password). To secure the login information and the rest of the information that is possibly

sent over the Internet when the administrator is working, the administration interface should

be accessed only over a secure (SSL) connection. Ideally, the administration interface would

notice if somebody tried to login over a non-secure connection and warn about it, or even

deny access.

The necessary features are: product management, user management and transaction

management. Product management should include listing, searching, editing and adding of

products. The searching should be available on as much fields as possible.

User management should include listing, searching, editing and adding of users - though the

latter will usually not be necessary from the management interface, as this happens through

Main Shop Page

Product Search Form Product List Returning Customer Login

Search Results

View Product Details

Add to Cart

View Cart

Buy Now Update Cart

Document/Site ServerLogin

Returning Customer Login New Customer Edit Form

View Cart

Edit Personal Information

Buy now

Your transaction has been saved

The customer Interface
should never be accessed
over an insecure (non SSL)
connection.

20

the user interface. Searching users needs only to be available on user name and credit card

number.

Transaction management should include listing, searching, editing and processing of

transactions. Searching of transactions should be available on the product and user name

field. Processing of transactions is what the administration interface will be used for most of

all, so special attention should be paid to ease of use and straightforwardness of this feature.

Best would be that the administrator would be provided with a list of unprocessed

transactions, which he could cycle trough easily, marking a “processed” field on each as he

processes it (i.e. charges the credit card). The management site map his is shown in figure

6.2.

Log in

OK

Not OK

Manager Main

Products Customers Transactions

Add

List

Edit

Search

Add

List
Search

Edit Add

List
Search

Edit

(un)processed

Process

The management interface
should never be accessed
over a non-encrypted
connection.

Fig.6.2 Management Site Map

Implementation of a secure e-commerce solution for the internet 21

7. Design

7.1 Preamble

In this chapter, the design of the software is discussed without going into system-specific

properties of the software. The actions the software should undertake when a user request a

product list, buys something etc. are discussed.

7.2 Multi-threading

As discussed higher, the software consists of 2 parts: a user interface and an administration

interface. This division of tasks may seem obvious from an outside point of view, but I chose

for another approach. I chose to develop three servlet classes that do all the interfacing with

their respective database (i.e. Products, Customers and Transactions). These databases -

hashtables - are private, which means they can only be accessed directly from within the

class. Other classes can only access the hashtables through the methods of their respective

class. I thought this approach would be the easiest way to keep the data integer, something

that requires special attention because Java is multi-threaded.

Multi-threading means that there can be multiple threads or instances of a class running at

the same time. This makes it possible for multiple people to buy things at the site at the

same time, without problems - provided the structures that are critical are synchronised. It

must be avoided at all cost that 2 threads access a structure, e.g. a hashtable, and try to alter

it at the same time. Therefore the java keyword synchronized can be used. You can

synchronise on a variable, thus allowing only one thread at a time access to this variable in a

particular piece of code, or you can put the synchronized keyword in a method declaration,

thereby only allowing access to the method for one thread at a time.

7.3 The secure connection

The approach with the three servlets that do all data interfacing has another consequence,

regarding SSL. Usually, e-commerce sites work over a normal http connection, and switch to

a secure server for the critical parts of the site, e.g. when the customer has to enter his credit

card details. This secure server is not necessarily another machine, but more likely just

another webserver, a secure one, running on the same machine. This was also the case in

my development environment.

The hashtables I use, products, customers and transactions, are all static, which means that

there is only one copy loaded in memory, and it is associated with the respective class itself,

not with the instances of the class. All instances can access it, but there is only one copy.

This is obviously necessary for data integrity. The hashtables are read from file when the first

instance of its class is loaded. When changes are made to the hashtable, the whole

hashtable is re-written to file.

22

At first I was intending to make the whole customer interface non-secure, and only change to

a secure connection for the editing of the personal details of the customer. The administrator

interface was going to be accessed only over a secure connection. But this approach proved

impossible.

The problem is that the secure and the normal web-server are completely separated. That

means that when the secure server is invoked, it loads a new copy of the classes, reading

the hashtable files from disk. Then, when a customer edits his details and saves them, the

hashtable in the memory of the secure server is updated, and written to disk - to the same

file as the normal server uses. Because the normal server does not reload the file every time

it has to look up something in the hashtable (for performance reasons), it never sees the

changes made to the file on disk until it is restarted. Even worse, if some change is made to

the hashtable in the memory of the normal server, it writes a copy of its hashtable to disk,

thus overwriting all changes made in the secure server. This is clearly unacceptable, and that

is why I decided to run the whole site over a secure connection. It is a bit slower, but it is

more secure and the only solution to the problem described above given the design of this

application.

The origin of the problem lies of course in the fact that I don’t use an external “industrial

strength” database - for reasons explained in section 4.7.

7.4 Modules

This modular approach is important. It implies that the three servlets that interface with a

database must provide all the methods that are needed, e.g. for adding, editing and deleting

of users. This means also that if someone later would like to use an industrial strength

database instead of the hashtables I use, he should simply replace those three classes with

classes that interface with the external database and provide all the functionality that the

ones I wrote provide.

7.3.1 Product data class
The product data class should contain all the fields with necessary information about a

product. The class should certainly define a unique id field that can be used to identify a

product, and to retrieve a product from the database of products using the unique id field as

the hashtable key. A method should also be defined to initialise the id field for new products.

7.3.2 Customer data class
The customer data class should contain all the fields with necessary information about a

customer. The class should also define a unique id field that can be used to identify a

customer, and to retrieve a customer from the database of customers, using the unique id

field as the hashtable key. Here, too, a method should also be defined to initialise the id field

for new customers.

Implementation of a secure e-commerce solution for the internet 23

7.3.3 Transaction data class
The transaction data class should contain all the fields with necessary information about a

transaction. The class should define a unique id field that can be used to identify a

transaction, and to retrieve a transaction from the database of transactions, using the unique

id field as the hashtable key. A method should also be defined to initialise the id field for new

transactions.

7.3.4 Products servlet class
The products servlet class should do all interfacing with the hashtable products that it defines

as a private static variable. Therefore it should provide methods to (key for the letters

between brackets: A = Administrator, UU = Unauthenticated User, AU = Authenticated User):

• add products (A)

• edit products (A)

• delete products (A)

• list products (A, UU, AU)

• search products (A, UU, AU)

• view product details (UU, AU)

Searching for products should be possible on all the fields when the administrator is doing a

search, and on all but the “dangerous” fields (like the real path of the document, the real file

name and the virtual base directory) when a customer is executing a search.

When an (unauthenticated) customer asks to see product details, those “dangerous” fields

should not be shown either.

7.3.5 Users servlet class
The products servlet class should do all interfacing with the hashtable customers that it

defines as a private static variable. Therefore it should provide methods to (key for the letters

between brackets: A = Administrator, UU = Unauthenticated User, AU = Authenticated User):

• add customers (A, UU)

• edit customers (A, AU)

• delete customers (A)

• list customers (A)

• search customers (A)

• login (UU)

The “login” feature deserves some explanation. Because we want returning customers to

login using their e-mail address and a password they specified, we have to create some sort

of “login” feature that connects the current session with a customer. This way we can allow a

user to update his/her personal information and look at the documents/sites he or she

purchased rights to, through a call to the Serve servlet (see 7.3.7).

24

7.3.6 ProcessTransactions servlet class
The ProcessTransactions servlet class should do all interfacing with the hashtable

transactions that it defines as a private static variable. Therefore it should provide methods

to (key for the letters between brackets: A = Administrator, UU = Unauthenticated User, AU =

Authenticated User):

• add transactions (A, AU)

• edit transactions (A)

• delete transactions (A)

• list transactions (A)

• search transactions (A)

• process transactions (A)

A transaction is added by an authenticated user when a purchase is made. To keep the

transaction database as simple as possible, a separate transaction is created for each

purchased product. So if a customer buys rights to 2 documents in one purchase, this will

show up as 2 transactions in the database.

The listing of transactions should be possible either including or excluding processed

transactions.

The processing of transactions should be no more than a special type of listing the

transactions: it should be a list of transactions whose processed field has not been set. This

method should display the first unprocessed transaction, allowing to change the number of

copies bought and the amount to be charged, and allowing the processed flag to be set. A

“next” button should allow access to the next unprocessed transaction, until there are no

more left.

7.3.7 Serve servlet class
When a customer purchases rights to a document/site, he must be able to access it. This is

done through the Serve class. This class serves the documents/sites to the customers. It

must have a list method which lists all the documents/sites the customer has bought rights to,

and a file method that serves the actual files to the customer - provided he or she has the

access rights.

This sounds simpler than it is, because for html files, it cannot simply read the file from disk

and pass it to the web browser. No, because we want to support the serving of complete sites

to customers, it must parse all html files to replace all relative links with a link to the file

method followed by the original relative link.

This means that when a relative link to another page in the site is encountered, the Serve

class should make sure that that link is changed to something it will understand when this link

is activated. For instance, when a link to an image in a graph subdirectory is made, the

HTML source looks like this: . If the url of the referring

Implementation of a secure e-commerce solution for the internet 25

document is http://some.server.name/index.html, then the browser will request the file

http://some.server.name/graph/image.gif when it encounters the IMG tag. In our case, the

referring document’s URL is something like

http://some.server.name/servlets/Serve/file?basedir/index.html, so if the IMG tag would be

unchanged by the Serve class, the browser would request the image with the URL

http://some.server.name/servlets/Serve/graph/image.gif. This would result in an error; what

we want is a link to http://some.server.name/servlets/Serve/file?basedir/graph/image.gif.

Consequently, the Serve class must parse the html files it serves, and - in this case - change

the IMG tag to . So we must add a

prefix to the relative links.

Things get more complicated when the fact is taken into account that the use of quotes to

delimit the relative url is not compulsory. Also, when a relative url looks like in this tag , i.e. a link to an anchor in the current html file, it should be replaced like this

, assuming that we are still in the

index.html document. So in this case, the filename of the document should be prefixed as

well. Another point is that absolute links (http://some.server.name/...) should not affected,

and therefore these should only be used to link to other servers. Good HTML writing requires

all local links to be relative anyway, so when a site is written properly, there should not be

any problem. Finally, we have to consider that there are several parameters of tags that need

parsing; there are the src parameter (for images, links to scripts and frames), the href

parameter (the classical links, the use of external Cascading Style Sheets (CSS) files,...), the

codebase parameter (java applets) and the background parameter (the body tag). Also,

because HTML is still evolving, the parsing algorithm should be written in such a way that it

is easy to add parameters to parse.

Therefore, the parsing of html files should be done in a separate class, ServeParser,

explained below.

For the Serve class, each product has three important fields: a filename as it is stored on

disk, a realBaseDir and a virtualBaseDir. More information on these three fields can be found

in section 8.2.1, Product.java.

Each product has a filename, and purchasing rights to the product should give rights to all

subdirectories and files in the base directory of the product. This allows complete sites of

multiple documents to be served by the Serve servlet, but it also introduces a potential

security risk: if the administrator would change the realBaseDir of a product to the root of a

drive, all the files on that drive are accessible to anyone who purchases rights to that

product. It is read-only access of course, and only available if you know the exact filename

and path of the file you want to see, but even then this is not desired. Therefore the

administrator should be very careful when designing a directory structure for the e-commerce

site. I suggest putting all documents/sites under the same directory, e.g. /doc/ under the root.

Then each document and each site should be given a separate subdirectory under that /doc/

26

directory, so that there can be no access to files that should not be accessible (i.e. system

files or other documents/sites).

Trying to get access to files above the realBaseDir of a product using a ../../filename

construction must not be possible; there should be a protection against this in the file method.

To make sure that documents/sites that are served through this application are not available

for free through another web server, the root directory for all documents/sites should not be

under the document root directory of any other web server on the machine!

The Serve servlet class should also make sure that no more simultaneous views of

documents/sites by the same user are allowed than the number of copies that he or she

purchased.

7.3.8 ServeParser class
This class should parse files. It should be the responsibility of the Serve class to feed only

html files to the ServeParser class. It should react on the following strings (both in upper- and

lowercase):

• HREF=

• SRC=

• CODEBASE=

• BACKGROUND=

But not on (also in upper- and lowercase):

• HREF=HTTP:// or HREF=“HTTP:// or HREF=FTP:// or HREF=“FTP:// or HREF=MAILTO:

or HREF=“MAILTO or HREF=NEWS: or HREF=“NEWS:

• SRC=HTTP:// or SRC=“HTTP:// or SRC=FTP:// or SRC=“FTP://

• CODEBASE=HTTP:// or CODEBASE=“HTTP://

• BACKGROUND=HTTP:// or BACKGROUND=“HTTP://

• all these strings, but with HTTPS instead of HTTP

When one of the above four strings is found in a file, the relative links should be replaced by

a relative link to the file method in the Serve servlet, followed by the original link. This way,

all access to the site - the parsing will not change anything when there is only one document

because there won’t be any relative links in that document - will go through the file method of

the Serve servlet.

Because HTML is still evolving, this class should be written in such a way that it is easy to

add extra strings to react on.

7.3.9 Management servlet class
This class should only be a “front-end” for the administration methods that exist in the other

servlets (Products, Users and ProcessTransactions). It should not be possible to call these

methods directly from the web through these other servlets, because authentication should

be done first by the Management servlet. This servlet only provides links to the

administration methods in the other servlets, after the authentication has been done. The

management servlet should only be called over a secure connection to ensure that the login

Implementation of a secure e-commerce solution for the internet 27

information and the sensitive information in the databases (e.g. credit card numbers) stays

safe.

7.3.10 Cart servlet class
The Cart servlet class should do all interfacing with the shopping cart that is stored in the

session. Therefore it should provide methods to (key for the letters between brackets: A =

Administrator, UU = Unauthenticated User, AU = Authenticated User):

• add products to the cart (UU, AU)

• edit the cart contents (UU, AU)

• view the cart contents (UU, AU)

• delete items from/the entire cart (UU, AU)

• display a “are you sure” screen before saving transaction (AU)

The shopping cart is stored in the current session. Because the customers should be able to

look around as much as possible before they have to supply their personal information, the

session must not necessarily be connected to a customer to fill the shopping cart. When it is

not, pressing the “buy now” button should first ask the customer to log in, and then display

the “are you sure” screen. If the customer is sure, the transaction(s) will be added to the

transaction database via the methods provided in the ProcessTransaction servlet.

28

8. Implementation

8.1 Preamble

All software on the server is written in Java. The E-commerce solution is made up of 6

servlets, 3 data classes, 1 filter class, 1 sorter class and 1 credit card validation class. The

data classes are called Product.java, Customer.java and Transaction.java, and they hold

respectively an object for a product, an object for a customer and an object for a transaction.

The 6 servlets are Products.java, Users.java, ProcessTransactions.java, Serve.java,

Management.java and Cart.java.

The filter class is ServeParser.java, the sorter class is Sorter.java, and the credit card

validation class is CheckCC.java.

There is also one JavaScript file, CustomerDetailsFormCheck.js, that holds the functions

used for form validation on the client.

8.2 The source code explained

8.2.1 Product.java
Product.java is a simple class that defines an object for a product, and provides 2 methods

for initialisation of a new product object. The defined fields for the object Product are: id,

name, type, manufacturer, price, currency, dataAvailable, dateExpired, description,

keywords, fileName, virtualBaseDir and realBaseDir. All these fields, except the id field, are

stored as strings.

id

The id of the product. Used by the servlets to identify the products. This field is never

editable by the customer or manager, it is always defined via the Products (see 8.2.4)

Servlet.

name

The name of the product. Used by users and manager to identify products.

type

The type of the product. This field can later be used to determine how to handle the product;

right now it is only displayed on the site, and one can search for products of a certain type.

manufacturer

The manufacturer of the product. In the case of products or sites, this field would better have

been called “author”, but this name might be more correct when the site gets expanded to

sell non-document type products.

price

Implementation of a secure e-commerce solution for the internet 29

The price of the product.

currency

The currency of the product. This field has been provided to allow easy support for multiple

currencies in the future; right now it is not used except for displaying on forms. Since all

calculations are done in Pound Sterling, it is advisable always to fill in £ in this field, to avoid

confusion.

dateAvailable

The date this product will be available. This field has been provided to allow easy support for

date-limited products (e.g. online courses), but this feature is not implemented as of now.

dateExpired

The date this product will be expired. This field has been provided to allow easy support for

date-limited products (e.g. online courses) , but this feature is not implemented as of now.

description

The description of this product. This can be a multiple line description.

keywords

A string of comma separated keywords. Handy for use in searches.

fileName

The filename (without path!) of the file containing the product on the server (assuming the

product is a document or site).

realBaseDir

The real path on the server of the file containing the product (e.g. /docs/). It is advisable

always to use forward slashes, even on a Windows system. The realBaseDir may end in a

slash or not, both are allowed, but it should always begin with a forward slash. A hardcoded

driveletter and base directory are always prefixed when this field is used; they are specified

in the Products servlet (see section 8.2.4).

virtualBaseDir

The virtual path on the server of the file containing the product (e.g. javaTutorial/). This path

is used to request the document or site for viewing. The customer will request a URL looking

like: http://some.server.name/Servlet/Serve?vbd=javaTutorial/index.html. In this URL,

“Serve” is the servlet that serves the documents and sites to the customer. “Servlet” is the

virtual base directory for your servlets, as specified in the server software (e.g. NES). “vbd” is

short for Virtual Base Directory, and is the parameter supplied to the Serve servlet to specify

which document or site is requested. More information can be found in the description of the

Serve servlet. The virtualBaseDir may end in a slash or not, both are allowed.

The defined methods for the object Product are: int getNextID(), and void setNextID(int id)

30

int getNextID()

Returns the next available Product ID. This method is called when a new Product object is

created.

void setNextID(int id)

Set the next available Product ID. This method is called from the readHashFile() method in

the Products servlet (see 8.2.4), to set the next available ID after the hashtable with products

has been read from file.

The code of the Product.java class can be found on the disk accompanying this report.

8.2.2 Customer.java
Customer.java is a simple class that defines an object for a customer, and provides 2

methods for initialisation of a new customer object. The defined fields for the object

Customer are: id, firstName, lastName, emailAddress, password, telephoneNumber,

creditCardName, creditCardType, creditCardNumber, creditCardExpiryMonth,

creditCardExpiryYear, creditCardZIP, addressLine1, addressLine2, addressCity, addressZIP,

addressProvince, addressCountry and purchasedRights. All these fields except the id,

creditCardExpiryMonth and creditCardExpiryYear fields are stored as strings!

id

The id of the customer. Used by the servlets to identify the customers. This field is never

editable by the customer or manager, it is always defined via the Users (see 8.2.5) servlet.

firstName

The first name of the customer. This field is required when the user fills out the form; there

are no restrictions when the administrator adds or edits a customer-record.

lastName

The last name of the customer. This field is required when the user fills out the form; there

are no restrictions when the administrator adds or edits a customer-record.

emailAddress

The e-mail address of the customer. Once registered (i.e. after the first purchase), the

customer can access the documents/sites he or she purchased rights to by logging in with the

emailAddress as login name and the password (see below) as password. The customer

should also login using these credentials when doing a subsequent purchase, to avoid having

to specify all the personal information again. This field is required when the user fills out the

form; there are no restrictions when the administrator adds or edits a customer-record.

telephoneNumber

The telephone number of the customer. Not required.

creditCardName

Implementation of a secure e-commerce solution for the internet 31

The name of the credit card holder. This name must not necessarily be the same as the

combined string firstName + lastName, but that value is where it defaults to, when a new

user fills out the form. This field is required when the user fills out the form; there are no

restrictions when the administrator adds or edits a customer-record.

creditCardType

The type of credit card the customer has. The options include: VISA, MASTERCARD,

DISCOVER, AMERICAN EXPRESS, JCB, DINERS and ENROUTE. These types of

creditcards are supported because validation code for them was available on the Internet.

This field is required when the user fills out the form; there are no restrictions when the

administrator adds or edits a customer-record.

creditCardNumber

The credit card number of the customer. This field is required when the user fills out the

form, and there is also a validity check. This check is also done when the administrator adds

or edits a customer-record.

creditCardExpiryMonth

The month the credit card will expire. This field is required when the user fills out the form;

there are no restrictions when the administrator adds or edits a customer-record. When a

new Customer object is created, creditCardExpiryMonth is set to 0. Possible values range

from 0 (January) to 11 (December).

creditCardExpiryYear

The year the credit card will expire. This field is required when the user fills out the form;

there are no restrictions when the administrator adds or edits a customer-record. When a

new Customer object is created, creditCardExpiryYear is set to 0. The creditCardExpiryYear

is saved as a 4 digit number to avoid Year 2000 (Y2K) problems.

creditCardZIP

The postal code of the credit card.

addressLine1

The first address line of the customer.

addressLine2

The second address line of the customer.

addressCity

The city of the customer.

addressZIP

The postal code of the customer.

addressProvince

The province of the customer.

32

addressCountry

The country of the customer.

purchasedRights

The rights the customer has purchased. This field is obviously never directly editable by the

user, but the manager can edit it. The format of this field is: id=quantity&id=quantity&...

where id is the product id and quantity the number of purchased copies. The quantity field

determines the amount of simultaneous logins that this customer is allowed for the product

specified by the id field.

The defined methods for the object Customer are: int getNextID(), and void setNextID(int id)

addressCountry

Returns the next available Customer ID. This method is called when a new Customer object

is created.

void setNextID(int id)

Set the next available Customer ID. This method is called from the readHashFile() method in

the Users servlet (see 8.2.5), to set the next available ID after the hashtable with customers

has been read from file.

The code of the Customer.java class can be found on the disk accompanying this report.

8.2.3 Transaction.java
Transaction.java is a simple class that defines an object for a transaction, and provides 2

methods for initialisation of a new transaction object. The defined fields for the object

Transaction are: id, date, userId, productId, quantity, amount, currency and processed. All

fields are ints, except for the Date date, the String currency and the boolean processed.

id

The id of the transaction. Used by the servlets to identify the transactions. This field is never

editable by the customer or manager, it is always defined via the ProcessTransactions (see

8.2.6) Servlet.

date

The date and time of the transaction. This field is stored as a Date object.

userId

The id of the customer that is charged for the transaction.

productId

The id of the product that is purchased in the transaction. When a customer purchases

several products at the same time, a separate transaction is created for every product.

quantity

Implementation of a secure e-commerce solution for the internet 33

The amount of copies the customer buys.

amount

The amount that will be charged to the credit card.

currency

The currency of the amount. This field will always be pound Sterling; it is provided for future

implementation of a multiple currency system.

processed

This boolean field specifies if this transaction has been processed. Set to false when the

transaction is created, it should be set to true when the administrator processes the

transaction. This field is used in the ProcessTransaction servlet to make a distinction

between unprocessed and processed transactions.

The defined methods for the object Transaction are: int getNextID(), and void setNextID(int

id)

int getNextID()

Returns the next available Transaction ID. This method is called when a new Transaction

object is created.

void setNextID(int id)

Set the next available Transaction ID. This method is called from the readHashFile() method

in the Users servlet (see 8.2.5), to set the next available ID after the hashtable with

transactions has been read from file.

The code of the Transaction.java class can be found on the disk accompanying this report.

8.2.4 Products.java
Products.java is the servlet class that does all the interfacing with the hashtable that contains

the products. Other servlets can only access the - private - hashtable products through

methods of the Products class.

8.2.4.1 Variables

The Products class defines the following private variables:

• boolean debug = false;

• static Hashtable products = new Hashtable();

• static String filename;

Two of these variables are static. This means that they are not variables of an instance of the

class, but that they are variables of the class itself and consequently have the same value for

all the instances.

34

The boolean debug is not static. It is a variable that determines if debug-output should be

written to the log files or not. It is set in the init() method of the servlet, depending on how it

was called (as http://some.server.name/Servlet/Products/some/command -> debug false, or

as http://some.server.name/Servlet/ProductsDebug/some/command -> debug true). For

more information about the calling of servlets from a URL, refer to section 5.2.

The products hashtable holds all information about the products in memory; it is a hashtable

with Product objects (see 8.2.1).

The String filename holds the filename of the database with products, as specified in the

servlets.properties file. It is set in the init() method. For more information about the

servlets.properties file refer to section 5.2.

8.2.4.2 Methods

The Products class provides the following public methods:

• void init(ServletConfig config)

• void destroy()

• void listProducts(ServletOutputStream out, String path, boolean admin)

• static String getServletDir(String path)

• void editProduct(ServletOutputStream out, HttpServletRequest req)

• static Product searchById(int searchId)

• void printProductList(ServletOutputStream out, int productId)

• static Product searchByVirtualBaseDir(String virtualBaseDir)

• void doSearch(ServletOutputStream out, HttpServletRequest req, boolean admin)

• void processChange(ServletOutputStream out, HttpServletRequest req)

• void doPost (HttpServletRequest req, HttpServletResponse res)

• void doGet (HttpServletRequest req, HttpServletResponse res)

• ServletOutputStream startOutput(HttpServletRequest req, HttpServletResponse res)

It also provides the following private methods:

• void saveHashFile(String filename)

• int findHighestId()

• void readHashFile(String filename)

• void addToHash(Product p)

• void deleteFromHash(Product p)

• void writeSearchButton(ServletOutputStream out, String path, String action)

• void viewProduct(ServletOutputStream out, HttpServletRequest req)

• void writeBeginningOfForm(ServletOutputStream out, String path, String formAction, boolean admin)

• void writeEndOfForm(ServletOutputStream out)

• void writeForm(ServletOutputStream out, Product p, String path, String formAction, boolean admin)

• Product searchProduct(HttpServletRequest req)

• static String extractVirtualBaseDir(String vbdParam)

• void processRequest(HttpServletRequest req, HttpServletResponse res)

Implementation of a secure e-commerce solution for the internet 35

• void endOutput(ServletOutputStream out)

These methods are discussed in detail below.

8.2.4.2.1 public void init(ServletConfig config)

Called by the web server when the servlet is just loaded. In this method the class variables

"debug" and "filename" are set, with values as specified in the servlet.properties file (see

section 5.2). Then the products hashtable is read from file.

There is one parameter, config, of the type ServletConfig. It contains the configuration

information and is passed to the init method by the server.

8.2.4.2.2 public void destroy(ServletConfig config)

Called by the web server when the server wants to drop the servlet from the Java Virtual

Machine (JVM). Clears the hashtable in memory.

There is one parameter, config, of the type ServletConfig. This parameter contains the

configuration information and is passed to the destroy method by the server.

8.2.4.2.3 private void saveHashFile(String filename)

Called when the Hashtable has to be written to file. This method saves the products

hashtable with one command, thanks to serialization!

There is one parameter, filename, of the type String, containing the filename of the products

file on disk.

8.2.4.2.4 private int findHighestId()

This method returns the highest Id in use in the products hashtable + 1. It is called from

readHashFile(), because when readHashFile() is called, on load of the products database file

from disk, we have to initialise the next available id for the Product class. Therefore, we have

to find the highest Id in use in the hashtable, increase it with 1 and return it.

8.2.4.2.5 private void readHashFile(String filename)

Called when the Hashtable has to be read from file. Reads the complete hashtable with one

command, thanks to serialization, and then sets the next available Product Id in the Product

class by using the findHighestId() method.

There is one parameter, filename, of the type String. It contains the filename of the products

file on disk.

8.2.4.2.6 private void addToHash(Product p)

This method adds a new product to, or updates a product in the products hashtable.

36

There is one parameter, p, of the type Product, containing the Product object to be added or

updated. The id field of the Product object is used as the key in the hashtable.

8.2.4.2.7 private void deleteFromHash(Product p)

This method deletes a product from the products hashtable.

There is one parameter, p, of the type Product. This parameter contains the Product object to

be deleted. The id field of the Product object is used as the key in the hashtable.

8.2.4.2.8 private void writeSearchButton(ServletOutputStream out, String path, String action)

This method writes a html form with a search button and a set of 2 radiobuttons to

ServletOutputStream out. The radiobuttons specify the type of search: AND or OR.

This method uses a parameter action, which can be either the String "Search" or the String

"SearchNow". The action parameter equals "Search" when the search form must be

displayed, and "SearchNow" when the form search results must be displayed.

There are three parameters, the first one is out, of the type ServletOutputStream. It is the

stream the output of the method is written to. The second parameter is path, a String that

contains the partial URL of the servlet (without the server name and without query-string). It

is used to specify the form action. The third parameter is action, another String, whose

function is explained higher.

8.2.4.2.9 public void listProducts(ServletOutputStream out, String path, boolean admin)

This method displays a list of available products, sorted alphabetically in the form “p.name

by p.manufacturer” . For an explanation of these fields, see section 8.2.1. Depending on the

admin parameter, a boolean that can be either true or false, it is decided which type of list is

created. When the administrator makes a request for a list of products, always through the

Management servlet (see 8.2.9), the admin parameter is true. In that case, a button is

displayed that allows the creation of new products, and the links in the product list point to

editProduct, in stead of viewProduct when a normal customer requests a list.

There are three parameters, the first one is out, of the type ServletOutputStream. It is the

stream the output of the method is written to. The second parameter is path, a String that

contains the partial URL of the servlet (without the server name and without query-string). It

is used to specify the form action. The third parameter is admin, a boolean, whose function is

explained higher.

8.2.4.2.10 public static String getServletDir(String path)

This method extracts the virtual directory of the servlet out of the URL. For example, when

the products servlet would be called as http://some.server.name/servlet/Products, this

method would return servlet/ .

Implementation of a secure e-commerce solution for the internet 37

There is one parameter, path, of the type String, containing the partial URL of the servlet

(without the server name and without query-string).

8.2.4.2.11 public void viewProduct(ServletOutputStream out, HttpServletRequest req)

This method is called when a user wants to view a particular product. It writes out a html

page with the product name, type, manufacturer, price, date available, date expired,

keywords and description. Links on the page allow to go to the main shop page, to the

product search page, to add this product to the shopping cart, and to view the contents of the

current shopping cart.

There are two parameters, the first one is out, of the type ServletOutputStream, holding the

stream the output of the method is written to. The second parameter is req, a

HttpServletRequest that contains the request information, like the parameters passed to the

servlet, ...

8.2.4.2.12 private void writeBeginningOfForm(ServletOutputStream out, String path, String formAction, boolean admin)

This method writes the a form header with a form action as specified in the method

parameters formAction and path and also depending on the admin parameter. It also writes

the <TABLE> tag.

There are four parameters, the first one is out, of the type ServletOutputStream. It is the

stream the output of the method is written to. The second parameter is path, a String that

contains the partial URL of the servlet (without the server name and without query-string).

The third parameter is formAction, a String that is used to specify the form action. The fourth

parameter is admin, a boolean, true if this request is made by the administrator of the site,

and false otherwise.

8.2.4.2.13 private void writeEndOfForm(ServletOutputStream out)

This method writes the </FORM> tag to ServletOutputStream out.

There is one parameter, out, of the type ServletOutputStream, containing the stream the

output of the method is written to.

8.2.4.2.14 private void writeForm(ServletOutputStream out, Product p, String path, String formAction, boolean admin)

This method is used to display a search or edit form, depending on the formAction

parameter. If the admin parameter is true, New/Save/Delete buttons are displayed. The

administrator can search on more fields (fileName, realBaseDir and virtualBaseDir - for more

information see section 8.2.1). This form can only be an editing form for a Product object

when admin is true.

There are five parameters. The first one is ServletOutputStream out, the stream the output of

the method is written to. The second parameter is Product p, the Product object to be edited

or the Product object to be used to store the search information. The third parameter is path,

38

a String that contains the partial URL of the servlet (without the server name and without

query-string). The fourth parameter is formAction, a String that is used to specify the form

action. The fifth parameter is admin, a boolean, true if this request is made by the

administrator of the site, and false otherwise.

8.2.4.2.15 public void editProduct(ServletOutputStream out, HttpServletRequest req)

This method is called when a product needs to be edited by the administrator. Writes a form

with the fields of the product to be edited already filled in using the writeForm method, and

with save, new, and search buttons at the bottom.

There are two parameters. The first one is ServletOutputStream out, the stream the output of

the method is written to. The second parameter is req, a HttpServletRequest, that contains

the request information like the parameters passed to the servlet etc.

8.2.4.2.16 private Product searchProduct(HttpServletRequest req)

This method extracts the id parameter from the HttpServletRequest req, and tries to find a

product with matching id in the products hashtable. Returns the found Product object, or

returns null if no match is found, or if the id parameter is not specified. This method is called

from editProduct and processChange.

There is one parameter, req, a HttpServletRequest, that contains the request information like

the parameters passed to the servlet etc.

Implementation of a secure e-commerce solution for the internet 39

8.2.4.2.17 public static Product searchById(int searchId)

This method finds a product with matching id in the products hashtable. It returns the found

Product object, or returns null if no match is found. Because it is called from the Cart Servlet

and Serve Servlet (see 8.2.10 and 8.2.7), it needs to be public.

There is one parameter, searchId, an int that contains the id of the product that must be

found.

8.2.4.2.18 public void printProductList(ServletOutputStream out, int productId)

This method writes the product list for use in a SELECT form-element to the

ServletOutputStream out. It is called from the ProcessTransactions Servlet (see 8.2.6).

There are two parameters. The first one is ServletOutputStream out, the stream the output of

the method is written to. The second parameter is productId, an int, containing the id of the

product that should be preselected in the SELECT form-element, or -1 if none should be pre-

selected.

8.2.4.2.19 private static String extractVirtualBaseDir(String vbdParam)

This method extracts the virtualBaseDir from the vbdParam; i.e. the part before the first

forward slash. After that slash, a directory/file structure can be specified. The vbdParam

parameter looks for example like: "WardSite/index.html", and is extracted in the

handleFileRequest method in the Serve servlet (see 8.2.7) from

"http://some.server.name/Servlet/Serve/file?vbd=WardSite/index.html". This method is

called from the static method searchByVirtualBaseDir, that is why it must be static.

There is one parameter, vbdParam, a String, containing the information to be parsed.

8.2.4.2.20 public static Product searchByVirtualBaseDir(String virtualBaseDir)

This method is used to find a product with matching virtualBaseDir in the products hashtable.

It returns the found Product object, or null if no match is found. It is called from Serve Servlet

(see 8.2.7).

There is one parameter, virtualBaseDir, a String, containing the virtualBaseDir to be

searched for.

8.2.4.2.21 public void doSearch(ServletOutputStream out, HttpServletRequest req, boolean admin)

If a search request occurs, this method processes the search. This means either display the

search form, or do the search and display the results, depending on the action parameter of

the pressed button (passed as a form variable via the req HttpServletRequest).

There are three parameters. The first one is ServletOutputStream out, the stream the output

of the method is written to. The second parameter is req, a HttpServletRequest, containing

the request information like the parameters passed to the servlet etc.The third parameter is

40

admin, a boolean, depending on which more or less fields are showed. See section

8.2.4.2.14, writeForm, for more information.

8.2.4.2.22 public void processChange(ServletOutputStream out, HttpServletRequest req)

If a change request occurs, this method processes the save (new or update) or delete

request. It can obviously only be called by the administrator.

There are two parameters. The first one is ServletOutputStream out, the stream the output of

the method is written to. The second parameter is req, a HttpServletRequest, containing the

request information like the parameters passed to the servlet etc.

8.2.4.2.23 public void doPost (HttpServletRequest req, HttpServletResponse res

This method is called by the web server when a HTTP POST request is made. It checks if

the length of the HttpServletRequest req is smaller than 8192 bytes; if it is, the

processRequest method (see 8.2.4.2.25) is called. If not, the request is denied. This is to

limit a typical “denial of service attack”, to which some web servers are still vulnerable. The

concept is to flood the webserver with a very long HttpServletRequest, thereby making it

crash.

There are two parameters, of which the first one is req, a HttpServletRequest containing the

request information like the parameters passed to the servlet etc. The second parameter is

res, a HttpServletResponse object used to specify the HTTP header information etc.

8.2.4.2.24 public void doGet (HttpServletRequest req, HttpServletResponse res

This method is called by the web server when a HTTP GET request is made. It simply calls

the processRequest method (see 8.2.4.2.25). There is no risk for the “denial of service”

attack described in 8.2.4.2.23 when GET is used to retrieve information from the server.

There are two parameters, of which the first one is req, a HttpServletRequest containing the

request information like the parameters passed to the servlet etc. The second parameter is

res, a HttpServletResponse object used to specify the HTTP header information etc.

8.2.4.2.25 private void processRequest(HttpServletRequest req, HttpServletResponse res)

This method takes a look at the path information and parameters and performs the requested

action. This is the core method of this servlet, as it decides which of the above methods

should be called when. A lot of the above methods are not called from here though, but from

other servlets (notably the Management Servlet, see 8.2.9).

There are two parameters. The first one is req, a HttpServletRequest, containing the request

information like the parameters passed to the servlet etc. The second parameter is res, a

HttpServletResponse object used to specify the HTTP header information etc.

8.2.4.2.25 public ServletOutputStream startOutput(HttpServletRequest req, HttpServletResponse res)

Implementation of a secure e-commerce solution for the internet 41

This method sets the HTTP content type and writes out the HTML header. It returns a

ServletOutputStream object where the output of the servlet should be written to.

There are two parameters. The first one is req, a HttpServletRequest, containing the request

information like the parameters passed to the servlet etc. The second parameter is res, a

HttpServletResponse object used to specify the HTTP header information etc.

8.2.4.2.26 private void endOutput(ServletOutputStream out)

This method writes the end of the HTML document: it writes the </BODY> and </HTML>

tags.

There is one parameter, out, of the type ServletOutputStream, which is the stream the output

of the method is written to.

The code of the Products Servlet class can be found on the disk accompanying this report.

8.2.5 Users.java
Users.java is the servlet class that does all the interfacing with the hashtable that contains

the customers. Other servlets can only access the - private - hashtable customers through

methods of the Users class.

8.2.5.1 Variables

The Users class defines the following variables/constants:

• private boolean debug = false;

• private static Hashtable customers = new Hashtable();

• public static String filename;

• public final String redirectToStr = "redirectTo";

• public final String userIdStr = "userId";

For information about the debug variable, see 8.2.4.1.

The customers hashtable holds all information about the products in memory; it is a

hashtable with Customer objects (see 8.2.2).

The String filename holds the filename of the database with customers, as specified in the

servlets.properties file. It is set in the init() method. For more information about the

servlets.properties file refer to section 5.2.

The String redirectToStr is a final, this is a constant. Therefore there is no need to declare it

static - it has a fixed value for all the instances of the class anyway. This constant is merely a

placeholder; it defines a string that is used as a key to save and retrieve redirection

information in a session.

The String userIdStr is also a final. This constant is merely a placeholder; it defines a string

that is used as a key to save and retrieve the user id of a customer in a session.

8.2.5.2 Methods

42

The Users class provides the following public methods:

• void init(ServletConfig config)

• void destroy()

• void saveHashFile(String filename)

• void addToHash(Customer c)

• void listUsers(ServletOutputStream out, HttpServletRequest req)

• void editUser(ServletOutputStream out, HttpServletRequest req)

• void processChange(ServletOutputStream out, HttpServletRequest req, HttpServletResponse res)

• static Customer searchByUserId(Integer userId)

• void printProductList(ServletOutputStream out, int userId)

• Customer searchByEmailAddress(String emailAddress)

• void writeLoginForm(ServletOutputStream out, HttpServletRequest req)

• void doSearch(ServletOutputStream out, HttpServletRequest req)

• void doPost (HttpServletRequest req, HttpServletResponse res)

• void doGet (HttpServletRequest req, HttpServletResponse res)

• ServletOutputStream startOutput(HttpServletRequest req, HttpServletResponse res)

It also provides the following private methods:

• int findHighestId()

• void readHashFile(String filename)

• void deleteFromHash(Customer c)

• Customer checkUser(HttpServletRequest req, HttpServletResponse res, ServletOutputStream out)

• void handleExisting(ServletOutputStream out, String formAction, String path)

• void showHelpScreen(ServletOutputStream out, String formAction, String path)

• void sendEmail(HttpServletRequest req, ServletOutputStream out)

• void writeBeginningOfForm(ServletOutputStream out, String path, String formAction)

• void writeEndOfForm(ServletOutputStream out)

• void writeForm(ServletOutputStream out, Customer u, String formAction, String path, boolean admin)

• Customer processNewCustomerInfo(HttpServletRequest req, StringBuffer messageBuff)

• void writeSearchButton(ServletOutputStream out, String path, String action)

• void writeSearchForm(ServletOutputStream out, String path)

• void logoutUser(HttpServletRequest req, ServletOutputStream out, HttpSession mySession)

• void processRequest(HttpServletRequest req, HttpServletResponse res)

• void endOutput(ServletOutputStream out)

These methods are discussed in detail below.

8.2.5.2.1 public void init(ServletConfig config)

Implementation of a secure e-commerce solution for the internet 43

Called by the web server when the servlet is just loaded. In this method the class variables

"debug" and "filename" are set, with values as specified in the servlet.properties file (see

section 5.2). Then the customers hashtable is read from file.

There is one parameter, config, of the type ServletConfig, containing the configuration

information. It is passed to the init method by the server.

8.2.5.2.2 public void destroy(ServletConfig config)

Called by the web server when the server wants to drop the servlet from the JVM. Clears the

hashtable in memory.

There is one parameter, config, of the type ServletConfig, containing the configuration

information. It is passed to the destroy method by the server.

8.2.5.2.3 public void saveHashFile(String filename)

Called when the Hashtable has to be written to file. This method saves the customers

hashtable with one command, thanks to serialization! This method must be public because it

is called from the ProcessedTransactions Servlet to save the purchasedRights field (see

8.2.2).

There is one parameter, filename, of the type String, which contains the filename of the

products file on disk.

8.2.5.2.4 private int findHighestId()

This method returns the highest Id in use in the hashtable customers + 1. It is called from

readHashFile(), because when readHashFile() is called, on load of the customers database

file from disk, we have to initialise the next available id for the Customer class. Therefore, we

have to find the highest Id in use in the hashtable, increase it with 1 and return it.

8.2.5.2.5 private void readHashFile(String filename)

Called when the customers hashtable has to be read from file. Reads the complete hashtable

with one command, thanks to serialization, and then sets the next available Customer Id in

the Customer class by using the findHighestId() method.

There is one parameter, filename, of the type String, which contains the filename of the

customers file on disk.

8.2.5.2.6 public void addToHash(Customer c)

This method adds a new customer to, or updates a customer in the customers hashtable.

There is one parameter, c, of the type Customer, which contains the Customer object to be

added or updated. The id field of the Customer object is used as the key in the hashtable.

44

This method must be public because it is called from ProcessedTransactions Servlet to save

the purchasedRights field (see 8.2.2).

8.2.5.2.7 private void deleteFromHash(Customer c)

This method deletes a customer from the customers hashtable.

There is one parameter, c, of the type Customer, which contains the Customer object to be

deleted. The id field of the Customer object is used as the key in the hashtable.

8.2.5.2.8 void listUsers(ServletOutputStream out, HttpServletRequest req)

This method displays the list of customers, sorted alphabetically in the form “c.lastName,

c.firstname” . For an explanation of these fields, see section 8.2.2. This method can only be

called by the administrator, through the Management Servlet (see 8.2.9). A button is

displayed that allows the creation of new products, and the links in the product list point to

editUser.

There are two parameters. The first one is ServletOutputStream out, the stream the output of

the method is written to. The second parameter is path, a String that contains the partial

URL of the servlet (without the server name and without query-string). It is used to specify

the form action.

8.2.5.2.9 public void editUser(ServletOutputStream out, HttpServletRequest req)

This method is called when a customer needs to be edited by the administrator. Writes a

form with the fields of the customer to be edited already filled in using the writeForm method,

and with save, new, and search buttons at the bottom.

There are two parameters. The first one is ServletOutputStream out, the stream the output of

the method is written to. The second parameter is req, a HttpServletRequest that contains

the request information like the parameters passed to the servlet etc.

8.2.5.2.10 public void processChange(ServletOutputStream out, HttpServletRequest req, HttpServletResponse res)

If a change request occurs, this method processes the save (new or update) or delete

request. It can obviously only be called by the administrator.

There are three parameters. The first one is ServletOutputStream out, the stream the output

of the method is written to. The second parameter is req, a HttpServletRequest containing

the request information like the parameters passed to the servlet etc. The third parameter,

res, is a HttpServletResponse object used to specify the HTTP header information etc.

8.2.5.2.11 public static Customer searchByUserId(Integer userId)

Implementation of a secure e-commerce solution for the internet 45

This method finds a customer with matching id in the customers hashtable. It returns the

found Customer object, or returns null if no match is found. Because it is called from the Cart

Servlet and Serve Servlet (see 8.2.10 and 8.2.7), it needs to be public.

There is one parameter, userId, an Integer, containing the id of the product that has to be

found.

 public void viewProduct(ServletOutputStream out, HttpServletRequest req)

This method is called when a user wants to view a particular product. It writes out a html

page with the product name, type, manufacturer, price, date available, date expired,

keywords and description. Links on the page allow to go to the main shop page, to the

product search page, to add this product to the shopping cart, and to view the contents of the

current shopping cart.

There are two parameters. The first one is ServletOutputStream out, which is the stream the

output of the method is written to. The second parameter is req, a HttpServletRequest that

contains the request information like the parameters passed to the servlet etc.

8.2.5.2.12 public void printUserList(ServletOutputStream out, int userId)

This method writes the product list for use in a SELECT form-element to the

ServletOutputStream out. It is called from the ProcessTransactions Servlet (see 8.2.6).

There are two parameters, of which the first one is ServletOutputStream out, the stream the

output of the method is written to. The second parameter is userId, an int, containing the id

of the customer that should be preselected in the SELECT form-element, or -1 if none should

be pre-selected.

8.2.5.2.13 Customer searchByEmailAddress(String emailAddress)

This method is used to find a customer with matching emailAddress in the customers

hashtable. It returns the found Customer object, or null if no match is found. It is called from

Serve Servlet (see 8.2.7).

There is one parameter, emailAddress, a String, containing the e-mail address to be

searched for.

8.2.5.2.14 Customer checkUser(HttpServletRequest req, HttpServletResponse res, ServletOutputStream out)

This method checks the user login. It checks if the supplied password matches with the

supplied e-mail address; if so, it returns the corresponding Customer object; otherwise it

returns null.

There are three parameters. The first one is req, a HttpServletRequest, containing the

request information like the parameters passed to the servlet etc. The second parameter,

res, is a HttpServletResponse object used to specify the HTTP header information etc. The

46

third parameter, out, of the type ServletOutputStream, is the stream where the output of the

method is written to.

8.2.4.2.15 public void editProduct(ServletOutputStream out, HttpServletRequest req)

This method is called when a product needs to be edited by the administrator. It writes a form

with the fields of the product to be edited already filled in using the writeForm method, and

with save, new, and search buttons at the bottom.

There are two parameters. The first one is ServletOutputStream out, the stream the output of

the method is written to. The second parameter is req, a HttpServletRequest that contains

the request information like the parameters passed to the servlet etc.

8.2.5.2.16 void handleExisting(ServletOutputStream out, String formAction, String path)

This method draws a login form for a returning customer, with a field for the e-mail address

of the customer, and one for his password. It also provides a link with instructions on what to

do when he has forgotten his password.

There are three parameters. The first parameter, out, of the type ServletOutputStream, is the

stream where the output of the method is written to. The second parameter is formAction, a

String that is used to specify the form action. The third parameter is path, a String that

contains the partial URL of the servlet (without the server name and without query-string).

8.2.5.2.17 private void showHelpScreen(ServletOutputStream out, String formAction, String path)

This method explains the user what to do when he forgot his password. On the click of the

submit button, the method sendEmail() is called.

There are three parameters. The first parameter, out, of the type ServletOutputStream, is the

stream where the output of the method is written to. The second parameter is formAction, a

String that is used to specify the form action. The third parameter is path, a String that

contains the partial URL of the servlet (without the server name and without query-string).

8.2.5.2.18 private void sendEmail(HttpServletRequest req, ServletOutputStream out)

This method sends an e-mail to the user when he has forgotten his password, containing the

password. Of course, a check is done first to find out if this e-mail address is registered. In

fact, the supplied e-mail address is looked up in the customers database, and the matching

password is sent to this address. So there is no possible way to steal someone’s address

using this feature of the software - apart from intercepting the e-mail.

There are two parameters. The first one is req, a HttpServletRequest, containing the request

information like the parameters passed to the servlet etc. The second parameter is out, of

the type ServletOutputStream, which is the stream the output of the method is written to.

Implementation of a secure e-commerce solution for the internet 47

8.2.5.2.19 private void writeBeginningOfForm(ServletOutputStream out, String path, String formAction)

This method writes a form header with a form action as specified in the method parameters

formAction and path. It also writes the <TABLE> tag.

There are three parameters. The first one is out, of the type ServletOutputStream, which is

the stream the output of the method is written to. The second parameter is path, a String

that contains the partial URL of the servlet (without the server name and without query-

string). The third parameter is formAction, a String that is used to specify the form action.

8.2.5.2.20 private void writeEndOfForm(ServletOutputStream out)

This method writes the </FORM> tag to ServletOutputStream out.

There is one parameter, out, of the type ServletOutputStream, which is the stream the output

of the method is written to.

8.2.5.2.21 private void writeForm(ServletOutputStream out, Customer u, String formAction, String path, boolean admin)

This method is called when customer information has to be recorded. It displays a form that

allows filling in new information or editing existing information. Depending on the admin

parameter, the output is slightly different: the administrator does not have some of the field

restrictions imposed on the users by use of Javascript (no empty required fields,...). The

checks for a correct credit card number and a valid expiry year are done even when the

administrator is editing user information. The second password field is only displayed when

the customer edits his or her information.

There are five parameters. The first one is ServletOutputStream out, the stream the output of

the method is written to. The second parameter is c, of the type Customer, containing the

Customer object to be edited. The third parameter is formAction, a String that is used to

specify the form action. The fourth parameter is path, a String that contains the partial URL

of the servlet (without the server name and without query-string). The fifth parameter is

admin, a boolean, true if this request is made by the administrator of the site, and false

otherwise.

8.2.5.2.22 public void writeLoginForm(ServletOutputStream out, HttpServletRequest req)

This method displays a form with two buttons that allow access to the new customer login

and the returning customer login.

There are two parameters, of which the first one is ServletOutputStream out, the stream the

output of the method is written to. The second parameter is req, a HttpServletRequest that

contains the request information like the parameters passed to the servlet etc.

48

8.2.5.2.23 private Customer processNewCustomerInfo(HttpServletRequest req, StringBuffer messageBuff)

This method is called when customer information should be recorded. It performs a number

of checks on the provided information, and returns a list of problems through the

messageBuff parameter if any are found. Most of these checks are done on the client as

well, but we can not trust on that because it is easy enough to avoid these tests! All you have

to do is save the form locally, replace the Javascript call by a simple submit and there you

are. Why still use client tests then? Because they make everything faster, as explained in

section 4.6, Programming languages on the client.

If no problems are encountered, this method returns the Customer object, otherwise, it

returns null.

There are two parameters. The first one is req, a HttpServletRequest, containing the request

information like the parameters passed to the servlet etc. The second parameter is

messageBuff, a StringBuffer that contains all error-messages if problems are found.

8.2.5.2.24 private void writeSearchButton(ServletOutputStream out, String path, String action)

This method writes a html form with a search button and a set of 2 radiobuttons to

ServletOutputStream out. The radiobuttons specify the type of search: AND or OR.

This method uses a parameter action, which can be either the String "Search" or the String

"SearchNow". The action parameter equals "Search" when the search form must be

displayed, and "SearchNow" when the form search results must be displayed.

There are three parameters. The first one is out, of the type ServletOutputStream, which is

the stream the output of the method is written to. The second parameter is path, a String

that contains the partial URL of the servlet (without the server name and without query-

string). It is used to specify the form action. The third parameter is action, another String,

whose function is explained higher.

8.2.5.2.25 private void writeSearchForm(ServletOutputStream out, String path)

This method displays the customers search form. The fields that can be searched on are

firstName, lastName and creditCardNumber.

There are three parameters. The first one is out, of the type ServletOutputStream, which is

the stream the output of the method is written to. The second parameter is path, a String

that contains the partial URL of the servlet (without the server name and without query-

string). It is used to specify the form action.

8.2.5.2.26 public void doSearch(ServletOutputStream out, HttpServletRequest req)

If a search request occurs, this method processes the search. This means either display the

search form, or do the search and display the results, depending on the action parameter of

the pressed button (passed as a form variable via the req HttpServletRequest).

Implementation of a secure e-commerce solution for the internet 49

There are two parameters, of which the first one is out, of the type ServletOutputStream. It is

the stream the output of the method is written to. The second parameter is req, a

HttpServletRequest, containing the request information like the parameters passed to the

servlet etc.

8.2.5.2.27 private void logoutUser(HttpServletRequest req, ServletOutputStream out, HttpSession mySession)

This method logs out the customer by invalidating the current session.

There are three parameters, of which the first one is out, of the type ServletOutputStream. It

is the stream the output of the method is written to. The second parameter is req, a

HttpServletRequest, containing the request information like the parameters passed to the

servlet etc. The third parameter is mySession, of the type HttpSession. It holds the current

Session object, or null if there is none.

8.2.5.2.28 public void doPost (HttpServletRequest req, HttpServletResponse res)

This method is called by the web server when a HTTP POST request is made. It checks if

the length of the HttpServletRequest req is smaller than 8192 bytes; if it is, the

processRequest method (see 8.2.5.2.30) is called. If not, the request is denied. This is to

limit a typical “denial of service attack”, to which some web servers are still vulnerable. The

concept is to flood the webserver with a very long HttpServletRequest, thereby making it

crash.

There are two parameters, the first one is req, a HttpServletRequest, containing the request

information like the parameters passed to the servlet etc. The second parameter is res, a

HttpServletResponse object used to specify the HTTP header information etc.

8.2.5.2.29 public void doGet (HttpServletRequest req, HttpServletResponse res)

This method is called by the web server when a HTTP GET request is made. It simply calls

the processRequest method (see 8.2.4.2.25). There is no risk for the “denial of service”

attack described in 8.2.5.2.29 when GET is used to retrieve information from the server.

There are two parameters, the first one is req, a HttpServletRequest, containing the request

information like the parameters passed to the servlet etc. The second parameter is res, a

HttpServletResponse object used to specify the HTTP header information etc.

8.2.5.2.30 private void processRequest(HttpServletRequest req, HttpServletResponse res)

This method takes a look at the path information and parameters and performs the requested

action. This is the core method of this servlet, as it decides which of the above methods

should be called when. A lot of the above methods are not called from here though, but from

other servlets (notably the Management Servlet, see 8.2.9).

50

There are two parameters, of which the first one is req, a HttpServletRequest, containing the

request information like the parameters passed to the servlet etc. The second parameter is

res, a HttpServletResponse object used to specify the HTTP header information etc.

8.2.5.2.31 public ServletOutputStream startOutput(HttpServletRequest req, HttpServletResponse res)

This method sets the HTTP content type and writes out the HTML header. It returns a

ServletOutputStream object where the output of the servlet should be written to.

There are two parameters. The first one is req, a HttpServletRequest, containing the request

information like the parameters passed to the servlet etc. The second parameter is res, a

HttpServletResponse object used to specify the HTTP header information etc.

8.2.5.2.32 private void endOutput(ServletOutputStream out)

This method writes the end of the HTML document: it writes the </BODY> and </HTML>

tags.

There is one parameter, out, of the type ServletOutputStream, containing the stream the

output of the method is written to.

The code of the Users Servlet class can be found on the disk accompanying this report.

8.2.6 ProcessTransactions.java
ProcessTransactions.java is the servlet class that does all the interfacing with the hashtable

that contains the transactions. Other servlets can only access the - private - hashtable

transactions through methods of the ProcessTransactions class.

8.2.6.1 Variables

The ProcessTransactions class defines the following variables/constants:

• private boolean debug = false;

• private static Hashtable transactions = new Hashtable();

• public static String filename;

• private static Enumeration eProcess = transactions.elements();

For information about the debug variable, see 8.2.4.1.

The transactions hashtable holds all information about the products in memory; it is a

hashtable with Transaction objects (see 8.2.3).

The String filename holds the filename of the database with transactions, as specified in the

servlets.properties file. It is set in the init() method. For more information about the

servlets.properties file refer to section 5.2.

The Enumeration eProcess is used in the processProcessing() method. It is used to store an

Enumeration of Transaction objects that have not been processed. On subsequent calls, the

processProcessing() method cycles through this Enumeration.

Implementation of a secure e-commerce solution for the internet 51

8.2.6.2 Methods

The ProcessTransactions class provides the following public methods:

• void init(ServletConfig config)

• void destroy()

• void editTransaction(ServletOutputStream out, HttpServletRequest req)

• void listTransactions(ServletOutputStream out, HttpServletRequest req)

• void processProcessing(ServletOutputStream out, HttpServletRequest req, HttpServletResponse res)

• void processChange(ServletOutputStream out, HttpServletRequest req, HttpServletResponse res)

• void doSearch(ServletOutputStream out, HttpServletRequest req, boolean admin)

• void doPost (HttpServletRequest req, HttpServletResponse res)

• void doGet (HttpServletRequest req, HttpServletResponse res)

• ServletOutputStream startOutput(HttpServletRequest req, HttpServletResponse res)

It also provides the following private methods:

• void saveHashFile(String filename)

• int findHighestId()

• void readHashFile(String filename)

• void addToHash(Product p)

• void deleteFromHash(Product p)

• String addToPurchasedRights(String productId, int numberToAdd, StringBuffer oldPurchasedRights)

• String addTransaction(HttpServletRequest req, HttpSession mySession, Customer c)

• void processNewTransaction(HttpServletRequest req, HttpServletResponse res, ServletOutputStream out)

• void writeBeginningOfForm(ServletOutputStream out, String path, String formActio)

• void writeEndOfForm(ServletOutputStream out)

• void writeForm(ServletOutputStream out, Transaction t, String path, String formAction)

• static Transaction searchById(int searchId)

• void writeSearchButton(ServletOutputStream out, String path, String action)

• void writeSearchForm(ServletOutputStream out, String path)

• void processRequest(HttpServletRequest req, HttpServletResponse res)

• void endOutput(ServletOutputStream out)

These methods are discussed in detail below.

8.2.6.2.1 public void init(ServletConfig config)

Called by the web server when the servlet is just loaded. In this method the class variables

"debug" and "filename" are set, with values as specified in the servlet.properties file (see

section 5.2). Then the transactions hashtable is read from file.

There is one parameter, config, of the type ServletConfig, which contains the configuration

information and is passed to the init method by the server.

52

8.2.6.2.2 public void destroy(ServletConfig config)

Called by the web server when the server wants to drop the servlet from the JVM. Clears the

hashtable in memory.

There is one parameter, config, of the type ServletConfig, which contains the configuration

information and is passed to the destroy method by the server.

8.2.6.2.3 private void saveHashFile(String filename)

Called when the Hashtable has to be written to file. This method saves the transactions

hashtable with one command, thanks to serialization!

There is one parameter, filename, of the type String, which contains the filename of the

products file on disk.

8.2.6.2.4 private int findHighestId()

This method returns the highest Id in use in the transactions hashtable + 1. It is called from

readHashFile(), because when readHashFile() is called, on load of the transactions database

file from disk, we have to initialise the next available id for the Transaction class. Therefore,

we have to find the highest Id in use in the hashtable, increase it with 1 and return it.

8.2.6.2.5 private void readHashFile(String filename)

Called when the Hashtable has to be read from file. Reads the complete hashtable with one

command, thanks to serialization, and then sets the next available Transaction Id in the

Transaction class by using the findHighestId() method.

There is one parameter, filename, of the type String, which contains the filename of the

products file on disk.

8.2.6.2.6 private void addToHash(Transaction t)

This method adds a new transaction to, or updates a transaction in the transactions

hashtable.

There is one parameter, t, of the type Transaction, which contains the Transaction object to

be added or updated. The id field of the Transaction object is used as the key in the

hashtable.

8.2.6.2.7 private void deleteFromHash(Transaction t)

This method deletes a product from the transactions hashtable.

There is one parameter, t, of the type Transaction, which contains the Transaction object to

be deleted. The id field of the Transaction object is used as the key in the hashtable.

Implementation of a secure e-commerce solution for the internet 53

8.2.6.2.8 private String addToPurchasedRights(String productId, int numberToAdd, StringBuffer oldPurchasedRights)

This method adds a product to the purchasedRights of a Customer object. It checks if this

product exists in the purchasedRights, and if it does, just changes the number of copies.

Otherwise, it adds the product to the string. For more information on the format of the

purchasedRights String, see section 8.2.2. The new purchasedRights String is passed to the

calling method as the return value.

There are three parameters. The first one is productId, a String containing the id of the

product to be added to the purchasedRights String. The second parameter is the int

numberToAdd, which holds the number of purchased copies. The last parameter,

StringBuffer oldPurchasedRights, holds the purchasedRights String (in the form of a

StringBuffer of course) to be updated.

8.2.6.4.9 private String addTransaction(HttpServletRequest req, HttpSession mySession, Customer c)

This method adds transactions to the transactions hashtable. It processes the shopping cart

contained in the mySession object passed as a parameter, and adds a transaction to the

hashtable for every product that it contains. This method returns the new purchasedRights

String for the Customer c passed as a parameter.

There are three parameters, of which the first one is req, a HttpServletRequest, containing

the request information like the parameters passed to the servlet etc. The second parameter

is mySession, of the type HttpSession. It holds the current Session object. The third

parameter is Customer c, the customer initiating these transactions.

8.2.6.4.10 private void processNewTransaction(HttpServletRequest req, HttpServletResponse res,

ServletOutputStream out)

The processing of the new transaction happens here. This method is called when the user

clicks the final submit button, allowing this application to charge his creditcard. This method

does all the necessary processing, calling the addTransaction() method, updating the

customer record with the new purchasedRights String, and deleting the current shopping cart

after the transaction.

There are three parameters. The first one is req, a HttpServletRequest, containing the

request information like the parameters passed to the servlet etc. The second parameter is

res, a HttpServletResponse object used to specify the HTTP header information etc. The

third one is out, of the type ServletOutputStream, which is the stream the output of the

method is written to.

8.2.6.2.11 private void writeBeginningOfForm(ServletOutputStream out, String path, String formAction)

54

This method writes the a form header with a form action as specified in the method

parameters formAction and path. It also writes the <TABLE> tag.

There are three parameters. The first one is ServletOutputStream out, the stream the output

of the method is written to. The second parameter is path, a String that contains the partial

URL of the servlet (without the server name and without query-string). The third parameter is

formAction, a String that is used to specify the form action.

8.2.6.2.12 private void writeEndOfForm(ServletOutputStream out)

This method writes the </FORM> tag to ServletOutputStream out.

There is one parameter, out, of the type ServletOutputStream, which is the stream the output

of the method is written to.

8.2.6.2.13 private void writeForm(ServletOutputStream out, Transaction t, String path, String formAction)

This method is used to display a search or edit form, depending on the formAction

parameter. New/Save/Delete buttons are also displayed.

There are four parameters, of which the first one is ServletOutputStream out, the stream the

output of the method is written to. The second parameter is t, of the type Transaction,

containing the Transaction object to be edited. The third parameter is path, a String that

contains the partial URL of the servlet (without the server name and without query-string).

The fourth parameter is formAction, a String that is used to specify the form action.

8.2.6.2.14 private static Transaction searchById(int searchId)

This method finds a transaction with matching id in the transaction hashtable. It returns the

found Transaction object, or returns null if no match is found.

There is one parameter, searchId, an int containing the id of the transaction that is to be

found.

8.2.6.2.15 public void editTransaction(ServletOutputStream out, HttpServletRequest req)

This method is called when a transaction needs to be edited by the administrator. Writes

a form with the fields of the transaction to be edited already filled in using the writeForm

method,

and with save, new, and search buttons at the bottom. It also provides buttons to edit the

Customer and the Product object of the transaction.

There are two parameters. The first one is out, of the type ServletOutputStream. It is the

stream the output of the method is written to. The second parameter is req, a

HttpServletRequest, that contains the request information like the parameters passed to the

servlet etc.

8.2.6.2.16 public void listTransactions(ServletOutputStream out, HttpServletRequest req)

Implementation of a secure e-commerce solution for the internet 55

This method displays a list of available products, sorted alphabetically in the form “p.name

by c.lastName, c.firstName (t.date)” . For an explanation of these fields, see section 8.2.1,

8.2.2 and 8.2.3. When the administrator makes a request for a list of transactions, this

happens always through the Management servlet (see 8.2.9). A button is displayed that

allows the creation of new transactions, and the links in the transaction list point to

editTransaction.

There are two parameters, of which the first one is out, of the type ServletOutputStream. It is

the stream the output of the method is written to. The second parameter is req, a

HttpServletRequest that contains the request information like the parameters passed to the

servlet etc.

8.2.6.2.18 private String getIdFromForm(HttpServletRequest req, String paramName)

Several forms use SELECT form objects with e.g. products or customers. The elements of

the SELECT look like “id: name”. This method retrieves the id from such a String. When no

colon is found in the String passed to getIdFromForm, it simply returns the String “blank”.

The latter happens when the search form is called and the user leaves one of the SELECT

fields blank.

There are two parameters. The first one is req, a HttpServletRequest, that contains the

request information like the parameters passed to the servlet etc. The second parameter, the

String paramName, is the name of the SELECT object to be found in the request information.

8.2.6.2.19 public void processProcessing(ServletOutputStream out, HttpServletRequest req, HttpServletResponse res)

This method creates a list of unprocessed transactions, and displays them to the

administrator one at a time during each subsequent call to it. The administrator gets a form

that shows him all information of an unprocessed transaction, allowing him to check a

“processed” checkbox, and to change the number of copies, the amount of the transaction,

and the currency of the transaction. The other fields can not be changed - if change in the

other fields is necessary, one should edit the transaction (results in a call to the

editTransaction() method). A “next” button at the bottom of the form allows to proceed to the

next unprocessed transaction.

There are three parameters. The first one is out, of the type ServletOutputStream, which is

the stream the output of the method is written to. The second parameter is req, a

HttpServletRequest, containing the request information like the parameters passed to the

servlet etc. The last one is res, a HttpServletResponse object used to specify the HTTP

header information etc.

8.2.6.2.20 public void processChange(ServletOutputStream out, HttpServletRequest req, HttpServletResponse res)

56

If a change request occurs, this method processes the save (new or update) or delete

request. It can obviously only be called by the administrator, through the Management

Servlet (see section 8.2.9).

There are three parameters. The first one is out, of the type ServletOutputStream. It holds

the stream the output of the method is written to. The second parameter is req, a

HttpServletRequest, containing the request information like the parameters passed to the

servlet etc. The last one is res, a HttpServletResponse object used to specify the HTTP

header information etc.

8.2.6.2.21 private void writeSearchButton(ServletOutputStream out, String path, String action)

This method writes a html form with a search button and a set of 2 radiobuttons to

ServletOutputStream out. The radiobuttons specify the type of search: AND or OR.

This method uses a parameter action, which can be either the String "Search" or the String

"SearchNow". The action parameter equals "Search" when the search form must be

displayed, and "SearchNow" when the form search results must be displayed.

There are three parameters. The first one is ServletOutputStream out, the stream the output

of the method is written to. The second parameter is path, a String that contains the partial

URL of the servlet (without the server name and without query-string). It is used to specify

the form action. The third parameter is action, another String, whose function is explained

higher.

8.2.6.2.22 private void writeSearchForm(ServletOutputStream out, String path)

This method displays a search form, allowing a search on customers and products.

There are two parameters. The first one is ServletOutputStream out, the stream the output of

the method is written to. The second parameter is path, a String that contains the partial

URL of the servlet (without the server name and without query-string). It is used to specify

the form action.

8.2.6.2.23 public void doSearch(ServletOutputStream out, HttpServletRequest req)

If a search request occurs, this method processes the search. This means either display the

search form, or do the search and display the results, depending on the action parameter of

the pressed button (passed as a form variable via the req HttpServletRequest).

There are two parameters, of which the first one is out, of the type ServletOutputStream. It is

the stream the output of the method is written to. The second parameter is req, a

HttpServletRequest, containing the request information like the parameters passed to the

servlet etc.

Implementation of a secure e-commerce solution for the internet 57

8.2.6.2.24 public void doPost (HttpServletRequest req, HttpServletResponse res

This method is called by the web server when a HTTP POST request is made. It checks if

the length of the HttpServletRequest req is smaller than 8192 bytes; if it is, the

processRequest method (see 8.2.6.2.26) is called. If not, the request is denied. This is to

limit a typical “denial of service attack”, to which some web servers are still vulnerable. The

concept is to flood the webserver with a very long HttpServletRequest, thereby making it

crash.

There are two parameters, of which the first one is req, a HttpServletRequest containing the

request information like the parameters passed to the servlet etc. The second parameter is

res, a HttpServletResponse object used to specify the HTTP header information etc.

8.2.6.2.25 public void doGet (HttpServletRequest req, HttpServletResponse res

This method is called by the web server when a HTTP GET request is made. It simply calls

the processRequest method (see 8.2.4.2.25). There is no risk for the “denial of service”

attack described in 8.2.6.2.24 when GET is used to retrieve information from the server.

There are two parameters. The first one is req, a HttpServletRequest, containing the request

information like the parameters passed to the servlet etc. The second parameter is res, a

HttpServletResponse object used to specify the HTTP header information etc.

8.2.6.2.26 private void processRequest(HttpServletRequest req, HttpServletResponse res)

This method takes a look at the path information and parameters and performs the requested

action. This is the core method of this servlet, as it decides which of the above methods

should be called when. A lot of the above methods are not called from here though, but from

other servlets (notably the Management Servlet, see 8.2.9).

There are two parameters, of which the first one is req, a HttpServletRequest, containing the

request information like the parameters passed to the servlet etc. The second parameter is

res, a HttpServletResponse object used to specify the HTTP header information etc.

8.2.6.2.27 public ServletOutputStream startOutput(HttpServletRequest req, HttpServletResponse res)

This method sets the HTTP content type and writes out the HTML header. It returns a

ServletOutputStream object where the output of the servlet should be written to.

There are two parameters. The first one is req, a HttpServletRequest, containing the request

information like the parameters passed to the servlet etc. The second parameter is res, a

HttpServletResponse object used to specify the HTTP header information etc.

8.2.6.2.28 private void endOutput(ServletOutputStream out)

58

This method writes the end of the HTML document: it writes the </BODY> and </HTML>

tags.

There is one parameter, out, of the type ServletOutputStream, which is the stream the output

of the method is written to.

The code of the ProcessTransactions Servlet class can be found on the disk accompanying

this report.

8.2.7 Serve.java
Serve.java is the servlet class that serves files to the customers, provided they have access

rights. It also includes a method to display a list of all products a particular customer has

rights to, indicating how many copies he can view simultaneously.

8.2.7.1 Variables

The Serve class defines the following variables:

• private boolean debug = false;

• private final String productAndUserKey = "userIdAndProductId";

• private final String driveLetter = "E:";

• private final String documentRoot = "/eCommDoc/";

For information about the debug variable, see 8.2.4.1.

The String productAndUserKey is a final. This constant is merely a placeholder; it defines a

string that is used as a key to save and retrieve a String containing a user Id and a product Id

in a session. This String is used to limit the number of simultaneous logins to a site or

document by a customer.

The finals driveLetter and documentRoot are used to create a hardcoded directory for all

documents and sites that can be served by the Serve Servlet. They are prefixed to all files

that have to be served, before the realBaseDir specified in the Product object. This has been

done to avoid the following possible security risk. Without a hardcoded driveletter and

documentRoot, a careless site administrator might leave the realBaseDir of a product blank,

thus practically allowing access to all files on this hard disk for everyone who purchases the

product. For more information on this problem, see section 7.3.7. The documentRoot String

must always begin and end with a slash, and all slashes must be forward.

8.2.7.2 Methods

The Serve class provides the following public methods:

• void init(ServletConfig config)

• void doPost (HttpServletRequest req, HttpServletResponse res)

• void doGet (HttpServletRequest req, HttpServletResponse res)

• ServletOutputStream startOutput(HttpServletRequest req, HttpServletResponse res)

It also provides the following private methods:

Implementation of a secure e-commerce solution for the internet 59

• String replaceSlashes(String filePath)

• void serveFile(HttpServletRequest req, HttpServletResponse res, Product p, String fileName)

• String extractAboveBaseDir(String vbdParam)

• int checkActiveProducts(HttpSessionContext thisContext, String hashtableKey)

• int checkPurchasedRights(Customer c, Product p)

• void handleFileRequest(HttpServletRequest req, HttpServletResponse res)

• void handleListRequest(HttpServletRequest req, HttpServletResponse res, ServletOutputStream out)

• void processRequest(HttpServletRequest req, HttpServletResponse res)

• void endOutput(ServletOutputStream out)

These methods are discussed in detail below.

8.2.7.2.1 public void init(ServletConfig config)

Called by the web server when the servlet is just loaded. In this method the class variable

"debug" is set, with the value as specified in the servlet.properties file (see section 4.2).

There is one parameter, config, of the type ServletConfig, which contains the configuration

information and is passed to the init method by the server.

8.2.7.2.2 private String replaceSlashes(String filePath)

This method replaces all back slashes by forward slashes in the parameter filePath. It then

returns the updated String. Called from serveFile.

The only parameter filePath, a String, is the String to parse.

8.2.7.2.3 private void serveFile(HttpServletRequest req, HttpServletResponse res, Product p, String fileName)

Here the actual serving of the files takes place. The file MIME type is determined depending

on the file extension. Currently supported extensions are: HTML, SHTML, HTM, JPEG, JPG,

GIF, ZIP, ARJ, GZ, TGZ and Z. All other extensions are served as being of the type

"text/plain".

The path of the requested file is created from the virtualBaseDir. It is assured that by serving

this file, no access is granted to a file above the document root of this product. When an

error occurs, e.g. a fileNotFoundException, the user is informed. All files of the "text/html"

type are parsed using the ServeParser class (see section 8.2.8). This method is called from

the handleFileRequest() method.

There are four parameters. The first one is req, a HttpServletRequest, containing the request

information like the parameters passed to the servlet etc. The second parameter is res, a

HttpServletResponse object used to specify the HTTP header information etc. As the third

parameter, Product p is passed. This product is the one with the virtualBaseDir matching the

60

one of the requested file. The last parameter is the String fileName, containing the name of

the file to be served.

8.2.7.2.4 private String extractAboveBaseDir(String vbdParam)

This method returns everything after the first forward slash in the String vbdParam passed as

a parameter. extractAboveBaseDir() is called from handleFileRequest().

The only parameter, the String vbdParam, holds the String to be parsed.

8.2.7.2.5 private int checkActiveProducts(HttpSessionContext thisContext, String hashtableKey)

This method checks how many sessions have the "productAndUserKey" set to the

hashtableKey value supplied as a parameter. It returns that number. The

productAndUserKey is a String containing the userId and productId, thus pinpointing who is

viewing what document or site in a certain session. It is of course only used by the Serve

Servlet, to check the number of concurrent logins to a certain document or site by a

customer.

There are two parameters. The HttpSessionContext thisContext is used to retrieve all

sessions, whereas the String hashtableKey holds the productAndUserKey to be searched

for.

8.2.7.2.6 private int checkPurchasedRights(Customer c, Product p)

This method simply searches the purchasedRights String of Customer c and returns the

number of simultaneous copies of Product p he is allowed to view. It is called from

handleFileRequest().

The two parameters are c, the Customer object, and p, the Product object.

8.2.7.2.7 private void handleFileRequest(HttpServletRequest req, HttpServletResponse res)

If there is a valid session, this method checks the rights the user has to the requested file and

handles accordingly. If there is a problem (like a request for too much simultaneous copies),

the user is informed. When there are no problems, serveFile() is called to serve the file. If

there is no valid session, the user is redirected to the login screen for returning customers.

There are two parameters. The first one is req, a HttpServletRequest, containing the request

information like the parameters passed to the servlet etc. The second parameter is res, a

HttpServletResponse object used to specify the HTTP header information etc.

8.2.7.2.8 private void handleListRequest(HttpServletRequest req, HttpServletResponse res, ServletOutputStream out)

If there is a valid session, this method checks which rights the user has and displays a list of

the documents/sites where access will be granted, mentioning the number of simultaneous

Implementation of a secure e-commerce solution for the internet 61

accesses by the same customer that are allowed. If there is no valid session, the user is

redirected to the login screen for returning customers.

There are three parameters, and the first one is req, a HttpServletRequest, containing the

request information like the parameters passed to the servlet etc. The second parameter is

res, a HttpServletResponse object used to specify the HTTP header information etc. The last

parameter is ServletOutputStream out, the stream the output of the method is written to.

8.2.7.2.9 public void doPost (HttpServletRequest req, HttpServletResponse res)

This method is called by the web server when a HTTP POST request is made. It checks if

the length of the HttpServletRequest req is smaller than 8192 bytes; if it is, the

processRequest method (see 8.2.7.2.11) is called. If not, the request is denied. This is to

limit a typical “denial of service attack”, to which some web servers are still vulnerable. The

concept is to flood the webserver with a very long HttpServletRequest, thereby making it

crash.

There are two parameters, of which the first one is req, a HttpServletRequest containing the

request information like the parameters passed to the servlet etc. The second parameter is

res, a HttpServletResponse object used to specify the HTTP header information etc.

8.2.7.2.10 public void doGet (HttpServletRequest req, HttpServletResponse res)

This method is called by the web server when a HTTP GET request is made. It simply calls

the processRequest method (see 8.2.7.2.11). There is no risk for the “denial of service”

attack described in 8.2.7.2.9 when GET is used to retrieve information from the server.

There are two parameters. The first one is req, a HttpServletRequest containing the request

information like the parameters passed to the servlet etc. The second parameter is res, a

HttpServletResponse object used to specify the HTTP header information etc.

8.2.7.2.11 private void processRequest(HttpServletRequest req, HttpServletResponse res)

This method takes a look at the path information and parameters and performs the requested

action. This is the core method of this servlet, as it decides which of the above methods

should be called when.

There are two parameters. The first one is req, a HttpServletRequest, containing the request

information like the parameters passed to the servlet etc. The second parameter is res, a

HttpServletResponse object used to specify the HTTP header information etc.

8.2.7.2.12 public ServletOutputStream startOutput(HttpServletRequest req, HttpServletResponse res)

This method sets the HTTP content type and writes out the HTML header. It returns a

ServletOutputStream object where the output of the servlet should be written to.

62

There are two parameters. The first one is req, a HttpServletRequest, containing the request

information like the parameters passed to the servlet etc. The second parameter is res, a

HttpServletResponse object used to specify the HTTP header information etc.

8.2.7.2.13 private void endOutput(ServletOutputStream out)

This method writes the end of the HTML document: it writes the </BODY> and </HTML>

tags.

There is one parameter, out, of the type ServletOutputStream, which is the stream the output

of the method is written to.

The code of the Serve Servlet class can be found on the disk accompanying this report.

8.2.8 ServeParser.java
ServeParser.java is a class that parses the html-files sent to the customers by the Serve

Servlet, from where it is called.

8.2.8.1 Variables

The ServeParser class defines the following variables:

• String prefix;

• int prefixLen;

• String fileName;

• int fileNameLen;

• final String quote = "\"";

• final String searchFor1 = "HREF="; // links etc.

• final int len1 = 5;

• final String searchNotFor1a = "HREF=HTTP://";

• final String searchNotFor1b = "HREF=\"HTTP://";

• final String searchNotFor1c = "HREF=FTP://";

• final String searchNotFor1d = "HREF=\"FTP://";

• final String searchNotFor1e = "HREF=MAILTO:";

• final String searchNotFor1f = "HREF=\"MAILTO:";

• final String searchNotFor1g = "HREF=NEWS:";

• final String searchNotFor1h = "HREF=\"NEWS:";

• final String searchNotFor1i = "HREF=HTTPS://";

• final String searchNotFor1j = "HREF=\"HTTPS://";

• final String searchFor2 = "SRC="; // img tags etc.

• final int len2 = 4;

• final String searchNotFor2a = "SRC=HTTP://";

• final String searchNotFor2b = "SRC=\"HTTP://";

Implementation of a secure e-commerce solution for the internet 63

• final String searchNotFor2c = "SRC=FTP:///";

• final String searchNotFor2d = "SRC=\"FTP://";

• final String searchNotFor2e = "SRC=HTTPS://";

• final String searchNotFor2f = "SRC=\"HTTPS://";

• final String searchFor3 = "CODEBASE="; // applet tags etc.

• final int len3 = 9;

• final String searchNotFor3a = "CODEBASE=HTTP://";

• final String searchNotFor3b = "CODEBASE=\"HTTP://";

• final String searchNotFor3c = "CODEBASE=HTTPS://";

• final String searchNotFor3d = "CODEBASE=\"HTTPS://";

• final String searchFor4 = "BACKGROUND="; // body tag etc.

• final int len4 = 11;

• final String searchNotFor4a = "BACKGROUND=HTTP://";

• final String searchNotFor4b = "BACKGROUND=\"HTTP://";

• final String searchNotFor4c = "BACKGROUND=HTTPS://";

• final String searchNotFor4d = "BACKGROUND=\"HTTPS://";

• int arrayLength, arrayLength2;

• byte[] b2 = new byte[13];

The prefix and fileName Strings hold the Strings that should be prefixed. prefixLen and

fileNameLen, both ints, respectively hold the length of the prefix and the fileName String. The

quote String holds just a quote. The Strings with a name like searchForX with X a number

contain the uppercase versions of the parameters to be searched for. The lenX ints hold the

length of the corresponding searchForX String. These ints are defined to improve

performance while executing the parse loops. The searchNotForXx Strings, with X a number

and x a letter, hold the Strings that should be ignored when searching for the corresponding

searchForX String. The arrayLength and arrayLength2 ints are used in the parsedRead()

method. They hold the length of the 2 buffers that are used to read in the bytes from the

underlying BufferedInputStream. The byte array b2 is used to hold the “push-back” buffer (for

more info see section 8.2.8.6) between subsequent calls to the parsedRead() method.

8.2.8.2 Methods

The ServeParser class provides the following public methods:

• ServeParser(InputStream in, int size, String prefix)

• final String parsedRead(int len)

It also provides the following private methods:

• void searchForHREF(String tmpStr, StringBuffer tmpStrBuff)

• void searchForSRC(String tmpStr, StringBuffer tmpStrBuff)

• void searchForCODEBASE(String tmpStr, StringBuffer tmpStrBuff)

• void searchForBACKGROUND(String tmpStr, StringBuffer tmpStrBuff)

64

In addition to these methods, ServeParser also defines an inner class, public static class

Test, to make testing easier.

These methods are discussed in detail below.

8.2.8.2.1 public ServeParser(InputStream in, int size, String prefix)

This is the constructor for the class. It initialises the class variables prefix, prefixLen,

fileName and fileNameLen. The parameter prefix is split in 2 parts, fileName is initialised to

the part after the last slash, and class variable prefix to the part before (and including) that

slash. This method obviously also calls the constructor of the super class.

There are three parameters. inputStream in is the inputStream where the bytes will be read

from. The int size determines the buffer size, and the String prefix holds the maximal String

to be prefixed.

8.2.8.2.2 private void searchForHREF(String tmpStr, StringBuffer tmpStrBuff) {

This method searches the String tmpStr (passed as a parameter) for the HREF tag

parameter, as specified in the class variable searchFor1. It ignores the HREFs matching the

class variables searchNotFor1x, with x from a to j. When there is a match, a prefix is

inserted, either just the class variable prefix, or prefix and the class variable filename in the

case of an anchor (see section 7.3.7 for more information). The String to be parsed is tmpStr,

and the result is returned in StringBuffer tmpStrBuff.

8.2.8.2.3 private void searchForSRC(String tmpStr, StringBuffer tmpStrBuff)

This method searches the String tmpStr (passed as a parameter) for the SRC tag parameter,

as specified in the class variable searchFor2. It ignores the SRCs matching the class

variables searchNotFor1x, with x from a to f. When there is a match, a prefix is inserted,

either just the class variable prefix, or prefix and the class variable filename in the case of an

anchor (see section 7.3.7 for more information). The String to be parsed is tmpStr, and the

result is returned in StringBuffer tmpStrBuff.

8.2.8.2.4 private void searchForCODEBASE(String tmpStr, StringBuffer tmpStrBuff)

This method searches the String tmpStr (passed as a parameter) for the CODEBASE tag

parameter, as specified in the class variable searchFor3. It ignores the CODEBASEs

matching the class variables searchNotFor3x, with x from a to d. When there is a match, a

prefix is inserted, either just the class variable prefix, or prefix and the class variable filename

in the case of an anchor (see section 7.3.7 for more information). The String to be parsed is

tmpStr, and the result is returned in StringBuffer tmpStrBuff.

Implementation of a secure e-commerce solution for the internet 65

8.2.8.2.5 private void searchForBACKGROUND(String tmpStr, StringBuffer tmpStrBuff)

This method searches the String tmpStr (passed as a parameter) for the BACKGROUND tag

parameter, as specified in the class variable searchFor4. It ignores the BACKGROUNDs

matching the class variables searchNotFor4x, with x from a to d. When there is a match, a

prefix is inserted, either just the class variable prefix, or prefix and the class variable filename

in the case of an anchor (see section 7.3.7 for more information). The String to be parsed is

tmpStr, and the result is returned in StringBuffer tmpStrBuff.

8.2.8.2.6 public final String parsedRead(int len)

The actual reading from the underlying buffered stream happens here. A buffer with the size

specified in the parameter len - 13 is read, and then a second buffer is read of 13 bytes. This

second buffer is simply appended to the first buffer, and stored in the class variable b2.

When the end of the total buffer is reached, the parsed buffer is returned, but without the last

13 characters. They are put in front of the buffer at the next read. The reason for this extra

“pushback” buffer is that when the buffer is parsed, one of the Strings to be searched for

might be cut in 2 parts by the end of the buffer. Without the 13 byte pushback buffer, this

String would simply not be found.

The length of the pushback buffer is 13 bytes because the longest String to search for is

‘BACKGROUND=‘, 11 bytes long. In addition to this, we need access to the 2 following bytes

(11+2 = 13), as they might be a quote and a hash. So, if we add the 13 bytes to the read

buffer, but not react on any Strings found closer than 13 bytes to the end of the total buffer

(as these will be put in front of the buffer on the next read), everything will be parsed

correctly.

The int len is the only parameter, specifying the number of bytes to be read.

The code of the ServeParser Servlet class can be found on the disk accompanying this

report.

8.2.9 Management.java
Management.java is a servlet class that provides only the authentication and the calling of

the management-methods from the Products, Users and Transactions servlets. These

methods can not be called directly from the web from these servlets.

8.2.9.1 Variables

The Management class defines the following variables:

• private boolean debug = false;

• private String adminLogin = "test";

• private String adminPassword = "test";

• private final String redirectParam = "redirectDestination";

66

• private static StringBuffer currentManagerId = new StringBuffer();

• public static final String manageParam = "Manager"; // also accessed from Users

servlet

For information about the debug variable, see 8.2.4.1.

The adminLogin and adminPassword Strings are the login credentials that are necessary to

log in as administrator of the site.

The String redirectParam is a final. This constant is merely a placeholder; it defines a string

that is used as a key to save and retrieve a String containing the redirect destination in a

session. This String is used when a page is requested but another one must first be passed,

e.g. a login screen.

The StringBuffer currentManagerId holds the Id of the current administration session, or null

if there is none. It is used as an extra security to make sure that a management session can

not be forged.

The String manageParam is also a final. This constant is merely a placeholder as well; it

defines a string that is used as a key to save and retrieve a String that indicates that a

session is the management session.

8.2.9.2 Methods

The Management class provides the following public methods:

• void init(ServletConfig config)

• static String getServletDir(String path)

• static boolean isManagementSession(HttpServletRequest req)

• void doPost (HttpServletRequest req, HttpServletResponse res)

• void doGet (HttpServletRequest req, HttpServletResponse res)

• ServletOutputStream startOutput(HttpServletRequest req, HttpServletResponse res)

It also provides the following private methods:

• void askManagementPassword(HttpServletRequest req, ServletOutputStream out)

• void handleProducts(HttpServletRequest req, ServletOutputStream out)

• void handleTransactions(HttpServletRequest req, HttpServletResponse res, ServletOutputStream out)

• void handleUsers(HttpServletRequest req, HttpServletResponse res, ServletOutputStream out)

• void logoutManagement(HttpServletRequest req, ServletOutputStream out, HttpSession mySession)

• String activeManagementSession(HttpSessionContext thisContext)

• void checkManagementLogin(HttpServletRequest req, HttpServletResponse res)

• void processRequest(HttpServletRequest req, HttpServletResponse res)

• void endOutput(ServletOutputStream out)

These methods are discussed in detail below.

8.2.9.2.1 public void init(ServletConfig config)

Implementation of a secure e-commerce solution for the internet 67

Called by the web server when the servlet is just loaded. In this method the class variable

"debug" is set, with the value as specified in the servlet.properties file (see section 4.2).

There is one parameter, config, of the type ServletConfig, which contains the configuration

information and is passed to the init method by the server.

8.2.9.2.2 public static String getServletDir(String path)

This method extracts the virtual directory of the servlet out of the URL. For example, when

the management servlet would be called as http://some.server.name/servlets/Management,

this method would return servlets/ .

There is one parameter, path, of the type String, which contains the partial URL of the servlet

(without the server name and without query-string).

8.2.9.2.3 private void askManagementPassword(HttpServletRequest req, ServletOutputStream out)

This method is called when a user wants to enter the management-side of the site. This

function merely displays the login form for the administrator. The information sent when the

login button is pushed is not encrypted, so this function should never be called over a non-

SSL connection!!

There are two parameters. The first one is req, a HttpServletRequest, containing the request

information like the parameters passed to the servlet etc. The second parameter,

ServletOutputStream out, is the stream the output of the method is written to.

8.2.9.2.4 private void handleProducts(HttpServletRequest req, ServletOutputStream out)

This method writes several links at the top of the screen. It reacts on URLs like

http:/some.server.name/servlet/Management/products/... If nothing is specified after

"products" in the URL, it just asks the administrator to make his choice from the above links.

The links provided are: main management page, user management page and transaction

management page. Also links to list products, add products and search products are

provided. If any of these last three links is clicked, this method reacts again, calling the

appropriate method in the Products Servlet, writing its output under the line of links and the

title of the page.

There are two parameters. The first one is req, a HttpServletRequest, containing the request

information like the parameters passed to the servlet etc. The second parameter,

ServletOutputStream out, is the stream the output of the method is written to.

8.2.9.2.5 private void handleTransactions(HttpServletRequest req, HttpServletResponse res, ServletOutputStream out)

This method writes several links at the top of the screen. It reacts on URLs like

http:/some.server.name/servlet/Management/transactions/... If nothing is specified after

"transactions" in the URL, it just asks the administrator to make his choice from the above

links. The links provided are: main management page, product management page and user

68

management page. Also links to list transactions, process transactions and search

transactions are provided. If any of these last links is clicked, this method reacts again,

calling the appropriate method in the ProcessTransactions Servlet, writing its output under

the line of links and the title of the page.

There are two parameters. The first one is req, a HttpServletRequest, containing the request

information like the parameters passed to the servlet etc. The second parameter,

ServletOutputStream out, is the stream the output of the method is written to.

8.2.9.2.6 private void handleUsers(HttpServletRequest req, HttpServletResponse res, ServletOutputStream out)

This method writes several links at the top of the screen. It reacts on URLs like

http:/some.server.name/servlet/Management/users/... If nothing is specified after "users" in

the URL, it just ask the administrator to make his choice from the above links. The links

provided are: main management page, product management page and transaction

management page. Also links to list users, add users and search users are provided. If any of

these last links is clicked, this method reacts again, calling the appropriate method in the

Users Servlet, writing its output under the line of links and the title of the page.

There are three parameters. The first one is req, a HttpServletRequest, containing the

request information like the parameters passed to the servlet etc. The second parameter is

res, a HttpServletResponse object used to specify the HTTP header information etc. The

third parameter, ServletOutputStream out, is the stream the output of the method is written

to.

8.2.9.2.7 private void logoutManagement(HttpServletRequest req, ServletOutputStream out, HttpSession mySession)

This method logs out the administrator, and provides a link to the main shop page. If the

administrator was not logged in, this is mentioned and the same link is provided.

There are three parameters. The first one is req, a HttpServletRequest, containing the

request information like the parameters passed to the servlet etc. The second parameter,

ServletOutputStream out, is the stream the output of the method is written to. The last

parameter is mySession, of the type HttpSession, and holds the current session.

8.2.9.2.8 public static boolean isManagementSession(HttpServletRequest req)

This method checks if the current session is the Management session or not. If so, it returns

true, otherwise, it returns false. This method is called from the Users Servlet, methods

processNewCustomer() and processRequest().

The only parameter is req, a HttpServletRequest, containing the request information like the

parameters passed to the servlet etc.

8.2.9.2.9 private String activeManagementSession(HttpSessionContext thisContext)

Implementation of a secure e-commerce solution for the internet 69

This method finds a session with management parameter set. If there is none, it returns null,

otherwise, it returns the session Id.

The parameter HttpSessionContext thisContext is used to retrieve all sessions.

8.2.9.2.10 private void checkManagementLogin(HttpServletRequest req, HttpServletResponse res)

This method checks if the login credentials provided are correct. If so, it logs out the user if

there was one connected to the Session, and connects this session to the Administrator.

Furthermore, for extra security, it sets the static class variable currentManagerId to the

session id of this session. Then it redirects to the redirect destination stored in the session, or

to the main management page if there was none.

There are two parameters. The first one is req, a HttpServletRequest, containing the request

information like the parameters passed to the servlet etc. The second parameter, res, a

HttpServletResponse, is used to specify the HTTP header information etc.

8.2.9.2.11 public void doPost (HttpServletRequest req, HttpServletResponse res)

This method is called by the web server when a HTTP POST request is made. It checks if

the length of the HttpServletRequest req is smaller than 8192 bytes; if it is, the

processRequest method (see 8.2.9.2.13) is called. If not, the request is denied. This is to

limit a typical “denial of service attack”, to which some web servers are still vulnerable. The

concept is to flood the webserver with a very long HttpServletRequest, thereby making it

crash.

There are two parameters. The first one is req, a HttpServletRequest, containing the request

information like the parameters passed to the servlet etc. The second parameter is res, a

HttpServletResponse object used to specify the HTTP header information etc.

8.2.9.2.12 public void doGet (HttpServletRequest req, HttpServletResponse res)

This method is called by the web server when a HTTP GET request is made. It simply calls

the processRequest method (see 8.2.9.2.13). There is no risk for the “denial of service”

attack described in 8.2.9.2.11 when GET is used to retrieve information from the server.

There are two parameters, of which the first one is req, a HttpServletRequest containing the

request information like the parameters passed to the servlet etc. The second parameter is

res, a HttpServletResponse object used to specify the HTTP header information etc.

8.2.9.2.13 private void processRequest(HttpServletRequest req, HttpServletResponse res)

This method takes a look at the path information and parameters and performs the requested

action. This is the core method of this servlet, as it decides which of the above methods

should be called when.

70

There are two parameters. The first one is req, a HttpServletRequest, containing the request

information like the parameters passed to the servlet etc. The second parameter is res, a

HttpServletResponse object used to specify the HTTP header information etc.

8.2.9.2.14 public ServletOutputStream startOutput(HttpServletRequest req, HttpServletResponse res)

This method sets the HTTP content type and writes out the HTML header. It returns a

ServletOutputStream object where the output of the servlet should be written to.

There are two parameters. The first one is req, a HttpServletRequest, containing the request

information like the parameters passed to the servlet etc. The second parameter is res, a

HttpServletResponse object used to specify the HTTP header information etc.

8.2.9.2.15 private void endOutput(ServletOutputStream out)

This method writes the end of the HTML document: it writes the </BODY> and </HTML>

tags.

There is one parameter, out, of the type ServletOutputStream, which is the stream the output

of the method is written to.

The code of the Management Servlet class can be found on the disk accompanying this

report.

8.2.10 Cart.java
Cart.java is the servlet class that does all the interfacing with the shopping cart saved in the

session.

8.2.10.1 Variables

The Cart class defines the following variables:

• private boolean debug = false;

• public final String cartVarName = "cartContents";

For information about the debug variable, see 8.2.4.1.

The String cartVarName is a final. This constant is merely a placeholder; it defines a string

that is used as a key to save and retrieve the shopping cart contents String in a session.

8.2.10.2 Methods

The Cart class provides the following public methods:

• void init(ServletConfig config)

• void viewCart(HttpServletRequest req, ServletOutputStream out, boolean buying)

• void doPost (HttpServletRequest req, HttpServletResponse res)

• void doGet (HttpServletRequest req, HttpServletResponse res)

Implementation of a secure e-commerce solution for the internet 71

• ServletOutputStream startOutput(HttpServletRequest req, HttpServletResponse res)

It also provides the following private methods:

• void String addToUnEmptyCart(HttpServletRequest req, StringBuffer oldValue)

• void addToCart(HttpServletRequest req, HttpServletResponse res, ServletOutputStream out)

• void updateCart(HttpServletRequest req, HttpServletResponse res, ServletOutputStream out)

• void writeBeginningOfForm(ServletOutputStream out, String action)

• void listCartContents(HttpServletRequest req, ServletOutputStream out, String oldCartValue, boolean buying)

• void writeViewCartButtons(ServletOutputStream out)

• void writeBuyCartButtons(ServletOutputStream out)

• String deleteFromCart(HttpServletRequest req, StringBuffer oldValue)

• void deleteCart(HttpServletRequest req, HttpServletResponse res, ServletOutputStream out)

• void processRequest(HttpServletRequest req, HttpServletResponse res)

• void endOutput(ServletOutputStream out)

These methods are discussed in detail below.

8.2.10.2.1 public void init(ServletConfig config)

Called by the web server when the servlet is just loaded. In this method the class variable

"debug" is set, with the value as specified in the servlet.properties file (see section 4.2).

There is one parameter, config, of the type ServletConfig, which contains the configuration

information and is passed to the init method by the server.

8.2.10.2.2 private String addToUnEmptyCart(HttpServletRequest req, StringBuffer oldValue)

This method adds a product to the shopping cart in this session. It checks if this product

exists in the cart, and if it does, just increases the number of copies. Otherwise, it adds the

product to the string. The format of the cart string is the same as the format of the

purchasedRights String in the Customer class: product=copies&product=copies&... The new

cart contents String is passed to the calling method (addToCart) as the return value.

There are two parameters, of which the first one is req, a HttpServletRequest, containing the

request information like the parameters passed to the servlet etc. The second parameter is

the StringBuffer oldValue, containing the original cart contents.

8.2.10.2.3 private void addToCart(HttpServletRequest req, HttpServletResponse res, ServletOutputStream out)

The adding of a product to the shopping cart happens here. This method is called when the

user clicks on the “add to cart” link when viewing a product’s details. If the cart was empty, a

new cart contents String is created in the session by this method; otherwise, the

addToUnEmptyCart() method is called to do the updating of the cart.

There are three parameters. The first one is req, a HttpServletRequest, containing the

request information like the parameters passed to the servlet etc. The second parameter is

72

res, a HttpServletResponse object used to specify the HTTP header information etc. The last

parameter is ServletOutputStream out, the stream the output of the method is written to.

8.2.10.2.4 private void updateCart(HttpServletRequest req, HttpServletResponse res, ServletOutputStream out)

The updating of the shopping cart happens here. When the customer views his cart contents,

he has the possibility to change the number of copies of products in the cart. He can not add

products from that form, but he can delete products by changing the number of copies to 0.

When the submit button on the bottom of the view cart form is pressed, the method is called

to process all the form parameters and update the cart contents.

There are three parameters. The first one is req, a HttpServletRequest, containing the

request information like the parameters passed to the servlet etc. The second parameter is

res, a HttpServletResponse object used to specify the HTTP header information etc. The last

parameter is ServletOutputStream out, the stream the output of the method is written to.

8.2.10.2.5 private void writeBeginningOfForm(ServletOutputStream out, String action)

This method writes the a form header with a form action as specified in the method

parameter formAction. It also writes the <TABLE> tag.

There are two parameters. The first one is ServletOutputStream out, the stream the output of

the method is written to. The last parameter is formAction, a String that is used to specify the

form action.

8.2.10.2.6 private void listCartContents(HttpServletRequest req, ServletOutputStream out, String oldCartValue, boolean

buying)

Depending on the buying parameter, this method displays an “edit Cart” form or a “buy Cart”

form. The “edit Cart” form allows the customer to change his cart contents. He can remove

products by setting the number of copies to 0, or just change the number of copies. Other

products can not be added from this form. The Submit Changes button at the bottom of the

form is connected to the updateCart() method through the processRequest() method.

Pressing the second button, Buy Now, will result in the authentication of the user, and after

that, the display of the “buy Cart” form. This form merely shows the cart contents, with no

way to edit them, and supplies a Submit button with a warning that the customer’s credit card

will be charged with the amount specified higher on the form if he presses it.

There are three parameters. The first one is req, a HttpServletRequest, containing the

request information like the parameters passed to the servlet etc. The second parameter is

out, of the type ServletOutputStream, which is the stream the output of the method is written

to. The last parameter, the boolean buying, is explained higher.

8.2.10.2.7 private void writeViewCartButtons(ServletOutputStream out)

Implementation of a secure e-commerce solution for the internet 73

This method writes 2 buttons at the bottom of the view Cart form. The first one is “Submit

Changes”, and simply causes the updateCart() method to be called to recalculate the cart.

The second button is “Buy Now”, and will result in the authentication of the customer and

after that the displaying of the “buy Cart” form through the viewCart() and listCartContents()

methods.

The only parameter out, of the type ServletOutputStream, is the stream the output of the

method is written to.

8.2.10.2.8 private void writeBuyCartButtons(ServletOutputStream out)

This method writes a “Submit” button at the bottom of the buy Cart form.

The only parameter out, of the type ServletOutputStream, is the stream the output of the

method is written to.

8.2.10.2.9 public void viewCart(HttpServletRequest req, ServletOutputStream out, boolean buying)

This method displays the shopping cart by calling the listCartContents() method. Depending

on the “buying” parameter, the cart is editable or not, and the buttons at the bottom of the

form are different. From here, listCartContents() is called to do the actual displaying of the

cart.

There are three parameters. The first one is req, a HttpServletRequest, containing the

request information like the parameters passed to the servlet etc. The second parameter is

out, of the type ServletOutputStream, which is the stream the output of the method is written

to. The last parameter, the boolean buying, is explained in section 8.2.10.2.6,

listCartContents().

8.2.10.2.10 private String deleteFromCart(HttpServletRequest req, StringBuffer oldValue)

This method allows the deletion of a product from the shopping cart. It is no longer used in

this application, but works perfectly. This method is called from the deleteCart() method. It is

still present in this sourcecode because it might come in handy in the future.

There are two parameters, of which the first one is req, a HttpServletRequest, containing the

request information like the parameters passed to the servlet etc. The second parameter is

the StringBuffer oldValue, containing the original cart contents.

8.2.10.2.11 private void deleteCart(HttpServletRequest req, HttpServletResponse res, ServletOutputStream out)

This method allows the deletion of a product from the shopping cart, or the deletion of the

entire cart if no product id is specified. It calls the deleteFromCart() method in the first case.

This method is no longer used in this application, but works perfectly. It is still present in this

sourcecode because it might come in handy in the future.

There are three parameters. The first one is req, a HttpServletRequest, containing the

request information like the parameters passed to the servlet etc. The second parameter is

74

res, a HttpServletResponse object used to specify the HTTP header information etc. The last

parameter is ServletOutputStream out, the stream the output of the method is written to.

8.2.10.2.12 public void doPost (HttpServletRequest req, HttpServletResponse res)

This method is called by the web server when a HTTP POST request is made. It checks if

the length of the HttpServletRequest req is smaller than 8192 bytes; if it is, the

processRequest method (see 8.2.10.2.14) is called. If not, the request is denied. This is to

limit a typical “denial of service attack”, to which some web servers are still vulnerable. The

concept is to flood the webserver with a very long HttpServletRequest, thereby making it

crash.

There are two parameters, of which the first one is req, a HttpServletRequest containing the

request information like the parameters passed to the servlet etc. The second parameter is

res, a HttpServletResponse object used to specify the HTTP header information etc.

8.2.10.2.13 public void doGet (HttpServletRequest req, HttpServletResponse res)

This method is called by the web server when a HTTP GET request is made. It simply calls

the processRequest method (see 8.2.10.2.14). There is no risk for the “denial of service”

attack described in 8.2.10.2.12 when GET is used to retrieve information from the server.

There are two parameters. The first one is req, a HttpServletRequest, containing the request

information like the parameters passed to the servlet etc. The second parameter is res, a

HttpServletResponse object used to specify the HTTP header information etc.

8.2.10.2.14 private void processRequest(HttpServletRequest req, HttpServletResponse res)

This method takes a look at the path information and parameters and performs the requested

action. This is the core method of this servlet, as it decides which of the above methods

should be called when. Some of the above methods are not called from here though, but

from other servlets (notably the Management Servlet, see 8.2.9).

There are two parameters. The first one is req, a HttpServletRequest, containing the request

information like the parameters passed to the servlet etc. The second parameter is res, a

HttpServletResponse object used to specify the HTTP header information etc.

8.2.10.2.15 public ServletOutputStream startOutput(HttpServletRequest req, HttpServletResponse res)

This method sets the HTTP content type and writes out the HTML header. It returns a

ServletOutputStream object where the output of the servlet should be written to.

There are two parameters, of which the first one is req, a HttpServletRequest, containing the

request information like the parameters passed to the servlet etc. The second parameter is

res, a HttpServletResponse object used to specify the HTTP header information etc.

8.2.10.2.16 private void endOutput(ServletOutputStream out)

Implementation of a secure e-commerce solution for the internet 75

This method writes the end of the HTML document: it writes the </BODY> and </HTML>

tags.

There is one parameter, out, of the type ServletOutputStream, which is the stream the output

of the method is written to.

The code of the Cart Servlet class can be found on the disk accompanying this report.

8.2.11 CheckCC.java

CheckCC.java is the credit card validation class that provides the methods to check the

validity of a credit card number. These Credit Card Validation functions come from Netscape

Communications Corporation FormChek.js (JavaScript 1.0 version), available at

http://developer.netscape.com/docs/examples/javascript/formval/overview.html

The original version was in Javascript, and I translated the JavaScript to Java. Because I did

not write these methods myself, I will not describe them separately. For more information on

each method, see the source code of this class.

The code of the CheckCC class can be found on the disk accompanying this report.

8.2.12 Sorter.java
This is a sorter class, copied from “Java Examples in a Nutshell”.

(http://www.oreilly.com/catalog/books/jenut/). Copyright (c) 1997 by David Flanagan.

The following statements are at the top of the class:

This example is provided WITHOUT ANY WARRANTY either expressed or implied.

You may study, use, modify, and distribute it for non-commercial purposes.

For any commercial use, see http://www.davidflanagan.com/javaexamples

If this site is to be used for commercial purposes, either this sorter class should be removed

(all that needs to be written then is a sorting algorithm for Strings - it is used in the Products,

Users and ProcessTransaction Servlets). Alternatively, all the examples could be licensed

for a quite reasonable price: 50 $ per programmer using the examples for commercial use, of

500 $ for a site license for any number of programmers within an organisation.

If no license is taken, there is another piece of code that should be modified: the part that

sends an e-mail to a customer when he forgets his password, in the Users servlet, comes

also originally from one or the examples in this book - albeit changed to fit the purpose it

serves here.

The code of the Sorter class can be found on the disk accompanying this report.

8.2.13 CustomerDetailsFormCheck.js
This the JavaScript source code used to do the checking of form-fields on the client, when a

customer edits his details, and when an existing user logs in.

76

I will only describe the four function that I wrote, the others come from Netscape

Communications Corporation FormChek.js (JavaScript 1.0 version), available at

http://developer.netscape.com/docs/examples/javascript/formval/overview.html

8.2.13.1 function checkCC(form_element)

This function is called from the onChange event in the creditCardNumber text field on the

new or edit user form. It calls the isCardMatch function to check the validity of the provided

number. The form_element passed as an argument is the creditCardNumber text field.

8.2.13.2 function shortCheckFields(form)

This function gets called when the submit button is pressed on the login form for existing

users. It checks whether the emailAddress field is a valid e-mail address and whether the

password field is not blank. If any of these criteria is not met, an error message is displayed

and the form is not submitted.

The form parameter holds the form object.

8.2.13.3 function checkFields(form)

This function is called when new users have filled out the complete new or edit user form. It

checks if fields are blank, if the provided e-mail address is of the right form, if the two

passwords match,... If any of these criteria is not met, an error message is displayed and the

form is not submitted.

The form parameter holds the form object.

8.2.13.4 function fillInCardholderName(form)

This function is called in the onChange event of the lastName field on the new or edit user

form. It fills in the combination firstName+” “+lastName as default for the creditCardName

field.

The form parameter holds the form object.

The code of the CustomerDetailsFormCheck.js file can be found on the disk accompanying

this report.

Implementation of a secure e-commerce solution for the internet 77

9. Installing the software on a computer

There are several necessary steps. First of all, obtain a copy a web server of your choice that

supports servlets. If you do not use Netscape Enterprise Server (v3.5.1 or higher), chances

are you will not need a copy of JRun (Live Software, v2.1.2 or higher), as I did not use JRun

specific java code. However, I have not tried this. If you do use NES, get the correct copy of

JRun (v2.1.2 or higher). In the rest of this section, I will assume that you use the combination

of NES and JRun.

Start by installing NES. The installation is straightforward, and more information about the

configuration can be found in appendix 11.1.3.

Next, install JRun. Here, too, the installation is straightforward, just follow the instructions of

the installation program. You will have to make some changes to the obj.conf file in the

configuration directory of the web server (typically “\Netscape\SuiteSpot\https-

ServerName\config”), but these changes are documented very well in the documentation that

comes with JRun.

Then copy the class files of the servlets of this thesis project to the directory that you have

chosen to be your servlet directory (as specified in the obj.conf file). The class files (java

bytecode) will work on any platform without recompilation. If you want to make changes to

the software, you will have to copy the java source files as well. In that case, you will also

have to install the Java Development Kit, which contains the javac java compiler. Install

version 1.2 Beta 3 or higher - the source code will not compile with an older version of the

JDK.

Make your changes using a normal text editor (make sure that it supports long filenames!),

and when they have been made, recompile the java code by typing ‘javac <filename>’ on the

command line, where <filename> is the name of the file, including the .java extension. Be

sure to type the exact filename (javac is case-sensitive!). When the source code compiles

without errors, restart the secure server (on a Windows system: go to the Services section in

the Control Panel, and stop and restart the correct NES server). At that point, you can access

the site through a web-browser and see the changes you have made.

Finally, copy the files general.css (the Cascading Style Sheets file used for some displaying

of forms) and CustomerDetailsFormCheck.js (the Javascript file with the code for the

checking of form fields on the client) to the document root of the web server, typically

\Netscape\SuiteSpot\docs.

78

10. Conclusion and further work

The program works entirely, with no known bugs. The requested functionality is entirely

available: the secure purchase of items over the Internet, featuring shopping carts and Credit

Card validation, and featuring a customer and an administration interface. An extra

advantage of the approach I have chosen (the development of the whole site in Java

Servlets) is the portability of the solution. It will run on any platform with a web server that

supports Java Servlets or that supports the JRun plugin.

This program will work satisfactory for a small business with not too much customers. For

big-scale deployment, a major change will have to be made: the Products, Users and

ProcessTransactions Servlets should be changed in such a way that they no longer use a

internal hashtable to store their data. The data should then be stored in an “industrial

strength” database like DB2, Oracle or Sybase, and accessed via Java Database

Connectivity (JDBC).

A few other enhancements could be made. For instance, multiple currency support could be

built in quite easily. Also interesting would be the possibility to purchase time-limited access

to a document or site. Those two feature could be added quite easily, because for both of

them the foundations have been provided: every product record has a currency field, and a

dateAvailable and a dateExpired field. These three fields are accessible through the

administration interface.

Another enhancement could be the automation of the transaction processing. Currently, an

operator has to check a processed checkbox on every new transaction, when he processes

it. It would be conceivable to feed the transaction information directly into special programs

from the credit card companies, and thus automating the transaction processing for all

transactions but these that have something special.

There are a lot more improvements that can be made, but all together, this implementation is

already a quite usable solution for the electronic purchase of access rights to documents or

websites.

Implementation of a secure e-commerce solution for the internet 79

11. Appendices

11.1 Reviews and documentation

11.1.1 Installing Novell Netware 4.11 Server

1. Hardware requirements:

• If you want to make your server boot without diskettes, you will need a DOS-

partition of at least 15MB. It is recommended to make it 1MB bigger for every

MB of RAM you have.

• RAM: 20MB + 0.008 x disc space + 1 to 4 MB cache buffer RAM (recommended

for performance)

1. The installation can be done from a CD, or from the network, using another NW 4.11

machine. I’ll describe the local CD-installation.

2. What else do we need?

• Novell Netware 4.11 Installation CDs (4)

• A bootable DOS or Win95 disc

• A disc with the drivers for the CD-ROM drive

1. The actual installation begins with calculating the necessary amount of space on the

DOS-partition. As I install on a machine with 32MB RAM, the partition should be 15 +

32 x 1 = 47 MB big. If you want to add more software to it later, you make it bigger. I

chose 100 MB, just in case.

2. Calculate the necessary amount of RAM: 20 MB + 0.008 x 1.6 GB + 1 to 4 MB Cache

Buffer RAM would amount to 33.8 to 36.8 MB. But as this server will initially only be

used for authentication, 32 MB will suffice. We can always add RAM later.

3. Now create the (bootable!) DOS-partition using FDISK and FORMAT. After that, install

the drivers for the CD-ROM.

4. Insert the first NW 4.11 CD, and start the “install” program that can be found under the

root.

• After the program starts, choose the installation language. Then read the license

agreement, pressing enter four times during this process.

• Select the type of installation required:

• NW Server Installation (choose this)

• Client

• Diskette Creation

• Readme Files

• Choose product to install

• NW 4.11 (choose this)

• NW 4.11 SFT III

• Type of install:

• Simple installation NW 4.11 (choose this)

80

• Custom

• Upgrade NW 3.1x to 4.x

• Specify server name: you can choose any name from 2 to 47 characters, using

alphanumeric characters, hyphen or underscore. I named my server IDORU.

• At this point the server boot files get copied to the DOS partition. On the

P166MMX with 32 MB RAM I am using this took about 3 minutes.

• After the copying of the files, NW tries to autodetect your hardware and install the

right drivers for it automatically. If for some reason it cannot determine the

correct driver for some of your hardware (e.g. a network card), it will ask you to

choose the driver. If this happens, make sure you are well documented: you

will need to know the IRQ and Base Address of your card, the manufacturer

and type. If the drivers are not present on the CD, you will need a disc that

should be provided by your manufacturer. You can also try to find the drivers

on the Internet, which is usually the fastest solution.

• When all the correct drivers have been installed, you get a summary of the

Server Drivers. At this point you can install additional drivers, for example if

some piece of hardware was not autodetected.

• Now more files are copied to the server from the CD.

• Is this the first NW4 Server? The installation program asks if this server is the

first NW 4.x server on your network. If it is, choose yes, otherwise choose no.

• Timezone? Choose the timezone you’re in.

• Organisation? This is how your directory tree will be called. Choose a preferably

short name. I named my directory tree ECOMM.

• Admin Password? You must type in a suitable password for the administrator

account now, and re-enter it for verification. Don’t write it down, as this is the

password that allows administration access to the server. But don’t forget it

either. The normal rules for choosing safe passwords apply.

• At this point you get a summary of important information about your server. Write

it down and store it in a safe place. This is what I got:

• Directory tree name: ECOMM

• Directory content: O=ECOMM

• Admin name: CN=Admin.O=ECOMM

• Insert Netware License Disc: this disc was provided with your distribution of

Novell, and it contains a file called SERVER.MLS which holds your license

information.

• Now the “Main Copy” of the files takes places. In my case it only took a couple of

minutes.

• After the Main Copy you get the chance to do some extra things like making

diskettes. There’s no need for that right now, just continue.

Implementation of a secure e-commerce solution for the internet 81

• You’ve reached the end of the installation! If you are lucky and don’t have any

problems with drivers for hardware, you can finish it in half an hour. But if you

have trouble like in my case, it could cost you a day or more. Murphy...

11.1.2 Installing Windows NT 4.0 over a LAN

Imagine this situation: you have a computer on your network, without CD-ROM drive, on

which you want to install Windows NT. Obviously, you'd rather not start putting in a CD-ROM

drive just for this installation. Well, you don't have to.

What you will need:

• a good backup of everything you still need from the local machine

• 120 MB of free space on your local (DOS) hard disk

• a bootable DOS system on that system (you can use a boot disk if you like). I've tried

using a Win95 machine in DOS-mode, but this locked up the NT-installation program,

apparently there was a problem with the long file names. So I booted up on a DOS

disk, and that solved the problem.

• network access on your target PC - we will get the NT installation CD from the network, so

you need a physical connection to it, plus the necessary software installed. I've tried it

using a Novell Netware 4.11 server, and the DOS VLM-drivers to access the network.

They fit on a 1.44 MB bootable DOS diskette, so you can create this disk to boot up

any system, any time you want to install NT over the network.

• a NT installation CD (or a copy on a hard disk - make sure you have a license for it)

accessible through the network.

When all the above requirements have been met, reboot the computer and logon to the

network. Assuming f:\temp is the location of the NT installation CD, for installation on an Intel

system change directories to f:\temp\i386.

Then type: "winnt /S:f:\temp\ /T:<local disk> /B", where <local disk> is any local hard disk

with 120 MB free space. The /S option indicates where the installation program is to find the

installation CD (this is a network path). The /B option allows "diskless" installation, to skip the

use of the three installation diskettes otherwise needed.

In fact you can omit all parameters except the /B; the installation program will find any free

space itself, and exit if there is not enough available. If you didn’t specify it on the command

line, it will ask you to supply the source directory of the files (the f:\temp\ specified on the

command line in the earlier example).

Once this is done, you enter the installation program which will guide you through the rest of

the setup. First, the necessary files (120 MB) get copied to your local disk. This can take

quite a while (on slower networks) because it's basically a bunch of small files. Using the

DOS VLM client drivers, it takes one hour or more on a P166. After this, the installation

continues, requiring you to reboot 2 times. Just follow the instructions of the program, and

that's it!

82

There is a possibility to automate the installation process further by loading a file with all the

choices pre-made, type "winnt /?" at the DOS-prompt (in the f:\temp\i386 directory in this

case) to find out more about this option.

11.1.3 Configuring Netscape Enterprise Server 3.5.1

This is an overview of some of the configuration options available in Netscape Enterprise

Server 3.5.1.

Conventions:

"Name" means click link or button Name

... means wait for next page

1) Installing CGI file type. This will allow files with extension .cgi, .bat and .exe to be

executed no matter where they are in the server directory structure. The alternative is to add

a CGI directory, so that any file located in that directory will be executable as a CGI program,

regardless of its extension. This provides more safety but less flexibility as all users would

have to put their CGI programs in that specific directory. It is possible to use both methods at

the same time, but I prefer just to use the CGI file type.

Procedure:

Surf to your administration server.

Click on the server you would like to manage.

Click "Programs"

Click "CGI File Type"

Activate CGI as a file type? Click "Yes", "OK",...,"Save and apply"

2)Activating Server Side Javascript. This will allow the use of Server Side Javascript

applications. These applications can be managed using the Server side Javascript

Application Manager, a link to which you will find on the Server Side JavaScript configuration

page after executing the procedure specified below. You can install up to 120 Javascript

applications on one server.

Procedure:

Surf to your administration server.

Click on the server you would like to manage.

Click "Programs"

Click "Server Side Javascript"

Activate the Server Side Javascript application environment? Click "Yes"

Require administration server password for Server Side Javascript Application Manager?

Click "Yes" "OK",...,"Save and apply"

3)Configuration Styles. Configuration Styles are an easy way to apply a set of options to

specific

Implementation of a secure e-commerce solution for the internet 83

files or directories that your server maintains. You can specify the following options in a

configuration style:

 CGI file type

 Character Set

 Default Query Handler

 Document Footer

 Dynamic Configuration

 Error Responses

 Log preferences

 Restrict Access

 Server parsed HTML

See Netscape Enterprise Server Help for more information.

Procedure:

Surf to your administration server.

Click on the server you would like to manage.

Click "Configuration Styles"

4)Configuring Document Preferences. Here we can configure Index Filenames, Directory

Indexing, the Server Home Page, Default MIME Type and the Parse Accept Language

Header.

Index Filenames : default index.html and home.html. You can add some if you need to; you

can also specify cgi scripts (if you have installed a CGI file type or a CGI directory).

Directory Indexing: this feature returns a list of the files and subdirectories of the requested

URL if no document is specified in it and if there is no Index File available. Turn this off for

security reasons. The server will generate an error instead of a directory listing.

Default MIME Type: If the server cannot determine the proper type of a document requested

by a client, it returns the Default MIME Type in the section that identifies the document type.

Parse the accept language header: If you have copies of files on your server in multiple

languages, a client using HTTP 1.1 can specify the language in which it would like to receive

the requested file. The client sends header information describing the languages they accept.

However, if you do not support multiple languages, you should turn this feature off as it slows

down your server.

Procedure:

Surf to your administration server.

Click on the server you would like to manage.

Click "Content Management"

Click "Document Preferences"

Directory Indexing: Click "None"

The other features can be altered as you like.

Click "OK".

84

4)Configuring URL Forwarding. This feature allows redirection of URL requests to different

URLs, for example if the location of (a group of) documents has changed. If you want to

redirect a URL to a URL on another server, where the directory structure is the same, you

can use the "URL Prefix" field. If the directory structure has changed as well, you can use the

"Fixed URL" field. For instance, if you removed a user from your server, and you want to

redirect all requests to any of his files to a file where you explain that the user no longer

exists on this server, you would fill in (e.g.) http://some.server.name/olduser/ in the URL

prefix field, and http://some.server.name/exists_no_more.html in the Fixed URL field.

How to get there:

Surf to your administration server.

Click on the server you would like to manage.

Click "Content Management"

Click "URL Forwarding"

5)Setting up hardware virtual servers. This is a way to have your server respond to

multiple IP addresses without installing multiple software servers. I have tried this, but there

seems to be some bug that stops my original server once I've added a hardware virtual

server. I didn't get it to work.

6)Setting up software virtual servers. This is a way to host multiple sites on 1 server, using

multiple hostnames, without the need for more than 1 IP address. This will only work with

certain (newer) browsers. It does not work with Netscape Navigator 1.x. I have tested this

feature with 2 browsers. It works with Netscape Communicator 4.04, but it does not work with

Internet Explorer 2.0.

7)Using Cache Control Directives. Cache Control Directives allow to indicate to any

caching proxy server which documents should be cached and which should not. The Proxy

server must support HTTP 1.1. Possible levels of cache control are:

Public

Private

No Cache

No Store

Must Revalidate

Maximum Age

For more information on these levels see the Netscape Enterprise 3.5.1 Help.

Cache Control Directives can be set for the entire server or for specific files and directories.

If your server hosts sensitive information it might be a good idea to restrict caching of that

information.

For more information about HTTP 1.1, see the HTTP 1.1 specification, RFC 2068 at

http://www.ietf.org/html.charters/http-charter.html

Implementation of a secure e-commerce solution for the internet 85

8)Set up Netshare. Netshare is a piece of software integrated in Enterprise Server that

provides an Enterprise user with a personal home page.

9) AutoCatalog. This agent allows to catalog your web site: it automatically generates web

pages that list and categorise the HTML documents on your server. The catalog can be

accessed at http://some.servername.com/catalog. This feature does not seem to work;

apparently a DLL (ns-httpd30.dll) is missing.

10) Using encryption: SSL. Secure Sockets Layer (SSL) is a protocol situated in the

network layer, above TCP-IP, but below HTTP, FTP,... It uses a combined symmetric/public

key encryption approach. Symmetric encryption uses one key for both encryption and

decryption.

For more information on the encryption of SSL, see section 4.4.2.

In order to use SSL with NES, you need to obtain a certificate. How to obtain such a

certificate is explained in-depth in the NES documentation, however, if you plan to use your

NES for an Intranet, you can issue your own certificates using Netscape Certificate Server

(NCS). Installing and configuring NCS goes beyond the scope of this document.

To obtain a certificate, go to Server Administration. Go to "Keys & Certificates". In order to

request a certificate, we first have to generate a key pair, stored in a key-pair file. While

generating the key pair, you have to specify an alias, which is a name associated with both a

key-pair file and a certificate file. You use the alias to refer to these files when setting up SSL

encryption on a server. The key-pair file contains an encrypted version of both the public and

private keys used for SSL encryption. The file is used when you request and install a

certificate. When you create the key, you will have to specify a password that will need when

starting your secure server. Don't forget it.

To create a key-pair file: (from NES 3.51 On-line Help):

From the Windows NT command prompt:

1.Go to the <server_root>/bin/admin/admin/bin directory.

2.Run the sec-key.exe application. The key-pair file generation program appears.

3.When prompted, type an alias for the new key-pair file. You might choose an alias that

matches your server (for example, web or mail). The alias cannot contain spaces, but it can

use symbols that your operating system allows in filenames (such as hyphens and

underscores). By default, the key-pair file is stored in the directory

86

C:/<server_root>/alias/<alias>-key.db where <alias> is the alias you typed. If you used the

alias mail, your key-pair file would be C:/<server_root>/alias/mail-key.db.

4.A screen with a progress meter appears. Move your mouse in random motions at random

speeds. These random movements are used to generate a random number for the unique

key-pair file. 5.When prompted, type a password of eight characters or more for your key-

pair file. The password must have at least one non-alphabetical character (a number or

punctuation mark). Make sure you memorise this password. The security of your server is

only as good as the security of the key-pair

file and its password. After you turn on SSL for a server (either the administration server or

another

Netscape server), you must type the key-pair file password when you start the server.

Now you have to request your certificate: go to General Administration, "Keys & Certificates",

"Request Certificate". Fill out the form and send the resulting "Certificate Request" to your

Certification Authority (CA).

When you get your Certificate from your CA, go to General Administration, "Keys &

Certificates", "Install Certificate". Choose "Certificate for this server" and paste the certificate

text you got from your CA in the textbox. Be sure to select the correct alias and click OK.

After your certificate is installed, you can now turn on the encryption for your server. Usually,

there is an insecure server running that handles with most of the requests. Only when it

comes to exchanging sensitive information (Credit Card numbers, etc.), the secure server

comes into action. So what I did is the following: I created a new server with the same

hostname, but secure, i.e. with port number 443 (default for https). This means of course that

you will have to re-do all the configuration changes you have made for the other server on

the new server. But it has the advantage that the insecure and the secure part of your server

are separated and easily accessible. The insecure server answers to

http://some.server.name/, and the secure server answers to https://some.server.name/.

11) Setting access restrictions for your server. The default setting for access restriction

on NES allows any user you've added to the user database to create any directory under the

document root. This is not desirable in most cases. So we want to restrict access to our

server.

The best procedure is to start by denying "anyone" (all users, including the ones without

authentication), from "anyplace", "all" rights. Then we allow "anyone" from "anyplace" the "r-

x-li" (read, execute, list and index) rights. Then we allow "owner" (the owner of any file on the

server) from "anyplace" "all" rights. This set of rules will allow anyone on your network to

read and execute files/directories on your server, but only the owners of the files/directories

will be able to change them, delete them or add new files/directories. Of course, you can

Implementation of a secure e-commerce solution for the internet 87

adapt these rules to your own needs, but keep in mind that it is always safest to start by

denying all rights to anyone, and then gradually allowing certain rights to certain (groups of)

people.

Procedure:

Surf to your administration server.

Click on the server you would like to manage.

Click "Server Preferences"

Click "Restrict Access"

A. Pick a resource: Editing: Choose "The entire Server"

Click "Edit Access Control"

Click "New Line" (this line denies all rights to anyone from anyplace)

Repeat Click "New Line" (alter this line to what you like) until you're ready

Click "Submit" when you have added all the lines you want.

...

Click "Save and apply"

11) Using Perl scripts with NES. To be able to use Perl scripts with NES, we need to install

Shell CGI Programs. Shell CGI is a server configuration that lets you run CGI applications

using the file associations set in Windows NT. As with the Installing of CGI types (see 1), we

have 2 options. Either we specify a shell CGI directory, or we configure the server to

associate specific file extensions with shell CGI by editing MIME types from the Server

Manager. We choose the last approach, to allow more flexibility for our users. But even if

you want to allow your users to execute shell CGI programs anywhere, you'll have to create a

shell CGI directory first, because this will activate shell CGI programs for your server. This

problem is not documented in NES.

Procedure:

Surf to your administration server.

Click on the server you would like to manage.

Click "Programs"

Click "ShellCGI Directory"

First, we will add a shell CGI directory. Fill in an URL prefix (e.g. cgi-shell) and the physical

Shell CGI directory on your server's hard disc. The directory doesn't have to exist on the hard

disc if you don't intend using it.

Click "OK"

...

Click "Save and Apply"

Now, we will create the perl MIME type.

Click "Server Preferences"

Click "MIME type"

88

There is an entry for the .pl extension by default. However, to associate .pl files with the

installed Perl for Windows NT, we need to edit it. So look up the entry in the table and Click

"Edit".

Choose "type" from the drop down box, and set the content type to "magnus-

internal/shellcgi". The file suffix field remains unchanged, "pl".

Click "Change MIME type"

...

Click "Save and apply"

12) Deleting users with Netshare. To delete a user and his/her Netshare, you start by

deleting the user in General Administration, Users and Groups, Manage Users. Then delete

the Netshare directory of the user on the server, using Explorer (on a Windows system) or

the command prompt. Now you have to go to Server Administration, Web Publishing, Index

and Update Properties. Re-Index the Netshare directory, so that Netshare will notice that the

Netshare directory of our removed user is gone.

Procedure:

Surf to your administration server.

Click "Users and Groups"

Click "Manage Users"

Find the user that you want to delete

Click "Delete User"

Now remove the directory using Explorer or the Command Prompt

Surf to your administration server.

Click on the server you would like to manage.

Click "Web Publishing"

Click "Index and Update Properties"

Click "View"

...

Select your Netshare root directory

Click "Index"

...

Remove the checkmark at "Set document owner to"

Click "Index"

Done!

13) Setting document ownership of many documents. When you want to set the

ownership of a lot of documents, you have to re-index the documents, filling out the "Set

owner documents to" dialog box. This seems to be the only way to take ownership of

directories, since the View|Properties feature in the Netscape Web Publisher doesn't seem to

work for directories. But of course when a user creates a new directory in his/her account

Implementation of a secure e-commerce solution for the internet 89

using the Netscape Web Publisher, he or she takes ownership immediately. Though most of

the times you have to do a View|Reload Window before you see the ownership.

Procedure:

Surf to your administration server.

Click on the server you would like to manage.

Click "Web Publishing"

Click "Index and Update Properties"

Click "View"

...

Select the directory you want to re-index

Click "Index"

...

Fill in the "Set document owner to" field

Click "Index"

14) Using Java Servlets with NES. This feature has been built into NES 3.51. The

Netscape Virtual Machine (VM), under which the servlets run, supports JDK 1.1. All you have

to do to get the Servlets to work, is to set the servlet directory and turn Java on for the

server.

Once you have activated the Java Servlets, you can access them through

http://<server-name>/servlet/<servlet-name>. If you set the directory of the Java servlets to

<ns-home>/plugins/java/servlets (<ns-home> is typically "/Netscape/SuiteSpot"), then you

will be able to try the example supplied with NES, BrowserDataServlet. Otherwise, you will

have to copy the example into your servlet directory first. I added one more setting to the

obj.conf file (<ns-home>/https-<host>/config/obj.conf, where <host> is the name of your

server as listed in Netscape Server Administration). This is what you will find at the bottom of

the document:

 <Object name="servlet">

 Service fn="java-run" class="sun/servlet/netscape/NSRunner" vpath="/servlet"

 </Object>

I added the field initfile (line 2 and 3 of the following code should be on one line):

 <Object name="servlet">

 Service fn="java-run" class="sun/servlet/netscape/NSRunner" vpath="/servlet"

initfile="<ns-home>/https-<host>/config/servlets.properties"

 </Object>

90

Here you will have to exchange <ns-home> and <host> for the appropriate directories.

Check the documentation of the JSDK for information on the content of the

servlets.properties file. You can use servlets without this file.

If you make this change in the obj.conf file, you have to make the server know you have

done it manually. Do the following:

1) Surf to your administration server.

2) Select the server you wish to manage.

3) Select the Apply button in the upper right hand corner.

4) Click on the Load Configuration Changes button.

Since version 1.2 of the JDK (currently (March 98) still in beta stadium), the JSDK is

incorporated in the JDK. Before that, the JSDK (v1.0.1) was available as a separate

package. This package can still be found at http://jeeves.javasoft.com. But other than for the

documentation and extra examples, there is no need for the JSDK to use Servlets with NES

3.5.1. If you want to write big applications, it is worthwhile to look into one of the free Servlet

plugins like JRun, by Live Software. They greatly improve the rather limited implementation

of Servlets of NES 3.5.1.

Procedure:

Surf to your administration server.

Click on the server you would like to manage.

Click "Programs"

Click "Java"

Check "Yes" to activate the Java interpreter, and supply the directories of the Java server

side applets and Java servlets you want to use.

Click "OK"

...

Click "Save & Apply"

15) Using NES to search documents. NES includes a search engine that allows to search

all documents on the server, that is, the ones that are indexed. By default, your whole

document root directory is indexed, and can be searched. If you create a new URL on your

server which points to a directory that is not located under the document root, you will have

to make a new Collection. This will index the documents you specify (e.g. *.html under

e:/javatut), making them searchable from the web.

You cannot make a Collection of a directory that is not a document directory. So before

making a new Collection of some new directory, be sure to add it to the Document

Directories list.

Remark: to search the new collection, you will have to select it in the "Search In" drop down

box, that can be found on the default search page at http://<server-name>/search.

Implementation of a secure e-commerce solution for the internet 91

Also make sure that you update the index of the searchable pages on a regular basis; this

can be done automatically using the "Schedule Collection Maintenance" page under "Agents

& Search" in the Server Manager.

Procedure:

Surf to your administration server.

Click on the server you would like to manage.

Click "Agents & Search"

Click "New collection"

Fill in the fields "Directory to index", "Documents matching", "Include subdirectories Yes/No",

"Collection Name", "Collection Label", "Description", "Collection Contains", "Extract

Metatags" and "Documents are in".

Click "OK"

...

Click "Save and Apply"

11.1.4 JBuilder 1.1

JBuilder is Borland's answer to Symantec's Café and Microsoft's Visual J++. With a GUI that

will look a bit familiar - but is still quite different - if you've ever used Delphi, Borland has

managed to create an Integrated Development Environment (IDE) that allows genuine Rapid

Application Development (RAD) using Java: you can build a full-featured graphical interface

by drag-and-drop.

JBuilder includes an excellent class browser, neatly integrated with the new "AppBrowser".

This AppBrowser is a whole new approach to the efficient writing of code: it lets you explore,

edit, design and debug, all in one unified window. The AppBrowser usually contains three

panes: the Navigation pane on the upper left, the Structure pane on the bottom left and the

Content pane on the right.

The Content pane has a set of tabs at the bottom, allowing you to select a viewer or editor for

the current file. E.g., when the current file is a .java file, there are three viewers available:

the Source Code Editor, the UI Designer (if this class has a UI) that allows the visual

construction of the UI of this class and the Documentation viewer, in which Borland created

an enhanced version of the JavaDoc standard by Sun. It automatically generates HTML

documentation pages from your java source code and comments.

The Structure pane has a set of tabs allowing you to select what kind of browser it is. The

Project Browser is one of the most important, as it allows you to browse through the files of

your project, but also the structural elements of the files in your project, e.g. a certain

function in one of your classes, or the line of code where a particular button is defined. This

allows very speedy browsing of your project, without having to scroll through source files

manually. The Structure pane also contains the Debugger and the Class Hierarchy Browser.

JBuilder works with classes and packages, obviously, as this is a Java package. Your project

is a package (it is possible to have more than one project open, this was an annoying

limitation of the older Delphi versions), that consists of several classes.

92

One thing is annoying when visually designing your forms: it is impossible to copy

components - like buttons etc. - visually from one class to another using Windows' copy and

paste. Borland has promised that this will be possible in the new version 2, which was

announced on 23rd March to be available in "early spring". We'll see. Something else that

will be fixed in version 2, is the support for other JDK's. In version 1.x, you have to use the

classes Borland provided with the product - there is no way to compile against a newer

version of the JDK. In fact, Borland warns explicitly in the documentation that you should not

replace the classes.zip file with a newer version from Sun.

There is another seriously annoying thing about JBuilder. It's the Online Help. Borland has a

tradition of having Online Help files that are not very extensive (the old Turbo Pascal

packages and Delphi have this problem). This is however not the case now, maybe because

the help is actually the Java specification and class definitions/descriptions from Sun. The

problem is the interface. Borland has chosen not to use the standard windows help files, but

has written its own Java help browser. And that has some serious flaws: once you are in it,

Alt-Tab will not switch you back to the IDE, and this help browser does not show up in the list

of open applications you get when you press Alt in the IDE. Another problem is that when you

select a topic in the list by typing the first few letters, half of the times the corresponding

information does not show up in the browser window when you press enter. You have to click

on another item in the list, so that the full name shows up in the editable text field, and then

click the item you want so that its full name shows in the text field and press enter or double-

click. Seriously maddening - I hope this will be fixed in version 2.

Looking at performance, I can say the following. I installed JBuilder on a P166MMX with

32MB of RAM running NT 4.0 Workstation. Borland recommends more RAM, and they are

right. It works, but quite slowly by times, e.g. when you switch to a different viewer.

Compiling the code goes very fast though - a lot faster than C and maybe even a bit faster

than Delphi. Executing the Java bytecode was not as fast though, but I suppose if you

compiled the bytecode to platform dependant machine code, this performance issue would

not be a problem anymore. Executing the application outside the IDE might be a good

solution as well.

Being new to Java, I decided to do the tutorial provided with JBuilder, which consists of the

creation of a basic text editor. I succeeded easily, although the description of the different

steps was a bit brief sometimes. Some parts of the blocks of code were not explained at all.

There were also quite some errors in the code - it is built up in steps, but some of the lines

were introduced a few steps too early, resulting in compiler errors. But if you just comment

out the offending lines, it compiles, and a few steps later you will see when to uncomment it.

In the end I had a working text editor.

Implementation of a secure e-commerce solution for the internet 93

I then decided to go a step further, just to get to know JBuilder better and to learn some

Java. I found a Java encryption class on the Internet (http://munkora.cs.mu.oz.au/~mkwan/),

called Information Concealment Engine (ICE), by Matthew Kwan. It is freeware, and he

describes it as follows:

"It is a 64-bit private key block cipher, in the tradition of DES. However, unlike DES,

it was designed to be secure against differential and linear cryptanalysis, and has no

key complementation weaknesses or weak keys. In addition, its key size can be any

multiple of 64 bits, whereas the DES key is limited to 56 bits."

I decided to include the ICE class in the text editor I had written, to allow encrypted storage

of text files. The integration went seamlessly; all I had to do was add a new file to the project

(the icepack.java file), and then add one line at the top of this class file ("package textedit;"),

to allow referencing to it from the other files in my project. After some work, I have now an

application that allows the encrypted storage and reading of text files, with several encryption

levels.

11.2 Source Code

The source code can be found on the disk accompanying this report. All the source code has

been formatted in such a way that it will print without unwanted linewraps when you copy it

into a MS Word document with font Arial and fontsize set to 8.

11.3 General.css

This Cascading Style Sheets file is used throughout the site to format forms. The file can be

found on the disk accompanying this report.

94

11.4 Used Abbreviations

ACL: Access Control List

DECT: Department of Engineering and Computer Technology (at the UCE)

FTP: File Transfer Protocol

HTTP: HyperText Transport Protocol

IE: Microsoft Internet Explorer

JDK: Java Development Kit

JSDK: Java Servlet Development Kit

KIHO: Katholieke Industriële Hogeschool Oost-Vlaanderen

LAN: Local Area Network

MS: Microsoft Corporation

NES: Netscape Enterprise Server

Netscape: Netscape Communications Corporation

NT: New Technology, in this book short for Windows NT

OS: Operation System

SSL: Secure Sockets Layer

SUN: Sun Inc.

UCE: University of Central England

Y2K: Year 2000

Implementation of a secure e-commerce solution for the internet 95

12. References

The Apache Site (http://www.apache.org)

The eMarketer Inc. Site (http://www.emarketer.com)

The Inprise Corporation Site - formerly the Borland Inc. Site (http://www.inprise.com)

The Internet Engineering Task Force (http://www.ietf.org)

The Javasoft Site (http://www.javasoft.com)

The Live Software Inc. Site (http://www.livesoftware.com)

The Lotus Development Corporation Site (http://www.lotus.com)

The Microsoft Corporation Site (http://www.microsoft.com)

The NCSA Site (http://www.ncsa.uiuc.edu)

The Netscape Communications Corporation Site (http://www.netscape.com)

The Novell Inc. Site (http://www.novell.com)

The Novonyx Inc. Site (http://www.novonyx.com)

The original SSL proposal by Netscape (http://home.netscape.com/newsref/std/SSL.html)

The Sun Inc. Java Site (http://java.sun.com)

The World Wide Web Security FAQ (http://www.w3c.org/Security/faq/www-security-faq.html)

The World Wide Web Consortium Site (http://www.w3c.org)

96

	1. Abstract
	2. Introduction
	2.1 Acknowledgements
	2.2 Introduction

	3. Problem definition
	3.1 Assignment
	3.2 Details
	3.3 Research

	4. Research
	4.1 Choices to make
	4.2 OS to run the web server on
	4.3 Web server
	4.4 Encryption
	4.4.1 Options
	4.4.2 SSL

	4.5 Programming language on the server
	4.6 Programming language on the client
	4.7 Databases

	5. Servlets and NES
	5.1 Running servlets under NES
	5.2 Calling servlets
	5.3 The basic structure of a servlet

	6. Specifications
	6.1 Two interfaces
	6.2 Customer interface
	6.3 Administration interface

	7. Design
	7.1 Preamble
	7.2 Multi-threading
	7.3 The secure connection
	7.4 Modules
	7.3.1 Product data class
	7.3.2 Customer data class
	7.3.3 Transaction data class
	7.3.4 Products servlet class
	7.3.5 Users servlet class
	7.3.6 ProcessTransactions servlet class
	7.3.7 Serve servlet class
	7.3.8 ServeParser class
	7.3.9 Management servlet class
	7.3.10 Cart servlet class

	8. Implementation
	8.1 Preamble
	8.2 The source code explained
	8.2.1 Product.java
	8.2.2 Customer.java
	8.2.3 Transaction.java
	8.2.4 Products.java
	8.2.5 Users.java
	8.2.6 ProcessTransactions.java
	8.2.7 Serve.java
	8.2.8 ServeParser.java
	8.2.9 Management.java
	8.2.10 Cart.java
	8.2.11 CheckCC.java
	8.2.12 Sorter.java
	8.2.13 CustomerDetailsFormCheck.js

	9. Installing the software on a computer
	10. Conclusion and further work
	11. Appendices
	11.1 Reviews and documentation
	11.1.1 Installing Novell Netware 4.11 Server
	11.1.2 Installing Windows NT 4.0 over a LAN
	11.1.3 Configuring Netscape Enterprise Server 3.5.1
	11.1.4 JBuilder 1.1
	11.2 Source Code
	11.3 General.css
	11.4 Used Abbreviations

	12. References

